K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2021

\(\sqrt{2x^2-8x+m}=x-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-8x+m=\left(x-1\right)^2\\x-1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-6x+m-1=0\\x\ge1\end{matrix}\right.\)

Yêu cầu bài toán thỏa mãn khi phương trình \(x^2-6x+m-1=0\left(1\right)\) có nghiệm duy nhất thỏa mãn \(x\ge1\)

\(\left(1\right)\Leftrightarrow m=f\left(x\right)=-x^2+6x+1\)

Đồ thi hàm số \(y=f\left(x\right)=-x^2+6x+1\):

Dựa vào đồ thị ta được \(m=10\)

P/s: Cái này t lười vẽ bảng biến thiên nên vẽ đồ thị đó, chứ bình thường viết trong vở thì dùng bảng biến thiên nhanh hơn nhiều.

8 tháng 3 2017

Phương trình viết lại  m + 1 x = 3 m 2 - 1 x = 1 - m

Phương trình đã cho có nghiệm duy nhất khi  3 m 2 - m - 2 ≠ 0 ⇔ m ≠ 1 m ≠ − 2 3

Do m Z và m [−5; 10]  m {−5; −4; −3; −2; −1; 0; 2; 3; 4; 5; 6; 7; 8; 9; 10}.

Do đó, tổng các phần tử trong S bằng 39.

Đáp án cần chọn là: B

25 tháng 11 2023

Xét phương trình hoành độ giao điểm\(x^2\)+4x-m=0 <=> x^2+4x=m, đây là kết hợp của 2 hàm số (P):y=\(x^2\)+4x và (d):y=m.
Khi vẽ đồ thị ta thấy parabol đồng biến trên khoảng (-2;+∞)=> Điểm giao giữa parabol và đồ thị y=m là điểm duy nhất thỏa mãn phương trình có duy nhất 1 nghiệm thuộc khoảng (-3;1).Vậy để phương trình có 1 nghiệm duy nhất <=> delta=0 <=>16+4m=0<=>m=-4.

mình trình bày hơi dài mong bạn thông cảm loading...  

5 tháng 2 2021

- Đặt \(a=x^2-2x\left(a\ge-1\right)\)

PTTT \(3\sqrt{a+3}=a+m\left(a\ge-m\right)\)

\(\Leftrightarrow9\left(a+3\right)=\left(a+m\right)^2=a^2+2am+m^2=9a+27\)

\(\Leftrightarrow a^2+a\left(2m-9\right)+m^2-27=0\)

Có : \(\Delta=\left(2m-9\right)^2-4\left(m^2-27\right)=4m^2-36m+81-4m^2+108\)

\(=-36m+189\)

- Để phương trình đề có 2 nghiệm phân biệt :

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\\left(a_1+1\right)\left(a_2+1\right)>0\\a_1+1+a_2+1>0\end{matrix}\right.\)

Lại có : Theo vi ét : \(\left\{{}\begin{matrix}a_1+a_2=-2m+9\\a_1a_2=m^2-27\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\a_1a_2+a_1+a_2+1>0\\a_1+a_2+2>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-36m+189>0\\m^2-27-2m+9+1=m^2-2m-17>0\\-2m+9+2=-2m+11>0\end{matrix}\right.\)

\(\Rightarrow m=\left(-\infty;1-3\sqrt{2}\right)\cup\left(1+3\sqrt{2};\dfrac{21}{4}\right)\) ( * )

- Có : \(x^2-2x=a\)

- Đặt \(f\left(x\right)=x^2-2x\)

- Ta có đồ thị \(x^2-2x=0\)

- Từ độ thị hàm số : Để phương trình \(x^2-2x=a\) có 2 nghiệm phân biệt trong đoạn 0, 3 thì \(a=(-1;0]\)

Lại có : \(a=[-m;+\infty)\)

\(\Rightarrow-m\le0\)

\(\Rightarrow m\ge0\)

- Kết hợp với ( * )

\(\Rightarrow m\in\left(1+3\sqrt{2};\dfrac{21}{4}\right)\)

Vậy ...

18 tháng 1 2017

⇔ x − 1 ≥ 0 2 x + m = x − 1 2 ⇔ x ≥ 1 x 2 − 4 x + 1 − m = 0     ( * )

Phương trình có nghiệm duy nhất khi hệ có nghiệm duy nhất.

TH1:  ∆ ' = 0 ⇔ m = - 3 thì (*) có nghiệm kép  x = 2 ≥ 1 (thỏa).

TH2:  ∆ ' > 0 ⇔ m > - 3 thì phương trình có nghiệm duy nhất khi (*) có 2 nghiệm thỏa mãn:

x 1 < 1 < x 2 ⇔ x 1 - 1 x 2 - 1 < 0 ⇔ x 1 x 2 - x 1 + x 2 + < 0

⇔ 1 - m - 4 + < 0 ⇔ m > - 2

Do m không dương nên m {−1; 0}

Kết hợp với trường hợp m = −3 ở trên ta được 3 giá trị của m thỏa mãn bài toán.

Đáp án cần chọn là: B

Câu 1: Tìm tất cả các giá trị cuả tham số m để phương trình \(4\sqrt{x^2-4x+5} =x^2-4x+2m-1\) có 4 nghiệm phân biệt Câu 2: Tìm các giá trị của tham số m sao cho tổng các bình phương hai nghiệm của phương trình \((m-3)x^2+2x-4=0\) bằng 4 Câu 3: Cho tam giác ABC có \(BC=a, AC=b, AB=c\) và I là tâm đường tròn nội tiếp tam giác. Chứng minh rằng: \(a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=\overrightarrow{0}\)  Câu 4: Cho tam...
Đọc tiếp

Câu 1: Tìm tất cả các giá trị cuả tham số m để phương trình \(4\sqrt{x^2-4x+5} =x^2-4x+2m-1\) có 4 nghiệm phân biệt

Câu 2: Tìm các giá trị của tham số m sao cho tổng các bình phương hai nghiệm của phương trình \((m-3)x^2+2x-4=0\) bằng 4

Câu 3: Cho tam giác ABC có \(BC=a, AC=b, AB=c\) và I là tâm đường tròn nội tiếp tam giác. Chứng minh rằng: \(a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=\overrightarrow{0}\) 

Câu 4: Cho tam giác ABC. Gọi D,I lần lượt là các điểm xác định bởi \(3\overrightarrow{BD}-\overrightarrow{BC}=\overrightarrow{0}\) và \(\overrightarrow{IA}+\overrightarrow{ID}=\overrightarrow{0}\). Gọi M là điểm thỏa mãn \(\overrightarrow{AM}=x\overrightarrow{AC}\) (x∈R)

a) Biểu thị \(\overrightarrow{BI}\) theo \(\overrightarrow{BA}\) và \(\overrightarrow{BC}\)

b) Tìm x để ba điểm B,I,M thẳng hàng

4
NV
14 tháng 12 2020

1.

Đặt \(\sqrt{x^2-4x+5}=t\ge1\Rightarrow x^2-4x=t^2-5\)

Pt trở thành:

\(4t=t^2-5+2m-1\)

\(\Leftrightarrow t^2-4t+2m-6=0\) (1)

Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb đều lớn hơn 1

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(2m-6\right)>0\\\left(t_1-1\right)\left(t_2-1\right)>0\\\dfrac{t_1+t_2}{2}>1\\\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-2m>0\\t_1t_2-\left(t_1+t_1\right)+1>0\\t_1+t_2>2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 5\\2m-6-4+1>0\\4>2\end{matrix}\right.\) \(\Leftrightarrow\dfrac{9}{2}< m< 5\)

NV
14 tháng 12 2020

2.

Để pt đã cho có 2 nghiệm:

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\\Delta'=1+4\left(m-3\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{11}{4}\end{matrix}\right.\)

Khi đó:

\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow\dfrac{4}{\left(m-3\right)^2}+\dfrac{8}{m-3}=4\)

\(\Leftrightarrow\dfrac{1}{\left(m-3\right)^2}+\dfrac{2}{m-3}-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{m-3}=-1-\sqrt{2}\\\dfrac{1}{m-3}=-1+\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=4-\sqrt{2}< \dfrac{11}{4}\left(loại\right)\\m=4+\sqrt{2}\end{matrix}\right.\)

29 tháng 5 2017

x − m x + 1 = x − 2 x − 1 ⇔ x ≠ ± 1 m x = m + 2

Phương trình đã cho có nghiệm ⇒ m ≠ 0 x = 1 + 2 m ≠ ± 1 ⇔ m ≠ 0 m ≠ 1

Vì m Z, m [−3; 5] nên m S = {−3; −2; 1; 2; 3; 4; 5}.

Đáp án cần chọn là: D

4 tháng 7 2017

Ta có: D = m m + 2 1 m = m 2 − m − 2

D x = 5 m + 2 2 m + 3 m = 5 m − ( m + 2 ) ( 2 m + 3 ) = − 2 m 2 − 2 m − 6

D y = m 5 1 2 m + 3 = 2 m 2 + 3 m − 5

Để hệ phương trình có nghiệm duy nhất thì D ≠ 0 ⇔ m 2 − m − 2 ≠ 0 ⇔ m ≠ − 1 m ≠ 2

Khi đó: x = D x D = − 2 ( m 2 + m + 3 ) m 2 − m − 2 ;   y = D y D = 2 m 2 + 3 m − 5 m 2 − m − 2

Để hệ phương trình có nghiệm âm thì: − 2 ( m 2 + m + 3 ) m 2 − m − 2 < 0     ( 1 ) 2 m 2 + 3 m − 5 m 2 − m − 2 < 0     ( 2 )

1 ⇔ m 2 + m + 3 m 2 − m − 2 > 0 ⇔ m 2 − m − 2 > 0   ( v ì   m 2 + m + 3 = m + 1 2 2 + 11 4 > 0 ,   ∀ m )

⇔ m < − 1 m > 2 *

2 ⇔ 2 m 2 + 3 m − 5 > 0 m 2 − m − 2 < 0 2 m 2 + 3 m − 5 < 0 m 2 − m − 2 > 0 ⇔ m < − 5 2 m > 1 − 1 < m < 2 − 5 2 < m < 1 m < − 1 m > 2 ⇔ 1 < m < 2 − 5 2 < m < − 1 * *

Từ (*) và (**) suy ra − 5 2 < m < − 1

Đáp án cần chọn là: D

 

a: Trường hợp 1: m=0

Bất phương trình sẽ là \(0x^2+3\cdot0\cdot x+0+1>0\)

=>1>0(luôn đúng)

Trường hợp 2: m<>0

\(\text{Δ}=\left(3m\right)^2-4m\left(m+1\right)\)

\(=9m^2-4m^2-4m=5m^2-4m\)

Để phương trình có nghiệm đúng với mọi số thực x thì \(\left\{{}\begin{matrix}m\left(5m-4\right)< 0\\m>0\end{matrix}\right.\Leftrightarrow0< m< \dfrac{4}{5}\)

Vậy: 0<=m<4/5

b: Trường hợp 1: m=4

\(g\left(x\right)=\left(4-4\right)\cdot x^2+\left(2\cdot4-8\right)x+4-5=-1< 0\)(luôn đúng)

Trường hợp 2: m<>4

\(\text{Δ}=\left(2m-8\right)^2-4\left(m-4\right)\left(m-5\right)\)

\(=4m^2-32m+64-4\left(m^2-9m+20\right)\)

\(=4m^2-32m+64-4m^2+36m-80\)

=4m-16

Để bất phương trình luôn âm thì \(\left\{{}\begin{matrix}4m-16< 0\\m-4< 0\end{matrix}\right.\Leftrightarrow m< 4\)

Vậy: m<=4