Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( 1 ) : wanna
( 2 ) : should
( 3 ) : dare
( 4 ) dark
( 5 ) : hourse k mk nhoa !
Đây là box Toán nhé bạn, phiền bạn chuyển bài này sang box Văn nhé.
[Toán.C23 _ 21.1.2021]
Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\)
Giả thiết trở thành \(2x+9y+21z\le12xyz\)
\(\Leftrightarrow3z\ge\dfrac{2x+8y}{4xy-7}\)
Áp dụng BĐT Cosi và BĐT BSC:
Khi đó \(P=x+2y+3z\)
\(\ge x+2y+\dfrac{2x+8y}{4xy-7}\)
\(=x+\dfrac{11}{2x}+\dfrac{1}{2x}\left(4xy-7+\dfrac{4x^2+28}{4xy-7}\right)\)
\(\ge x+\dfrac{11}{2x}+\dfrac{1}{x}\sqrt{4x^2+28}\)
\(=x+\dfrac{11}{2x}+\dfrac{3}{2}\sqrt{\left(1+\dfrac{7}{9}\right)\left(1+\dfrac{7}{x^2}\right)}\)
\(\ge x+\dfrac{11}{2x}+\dfrac{3}{2}\left(1+\dfrac{7}{3x}\right)\)
\(\ge x+\dfrac{9}{x}+\dfrac{3}{2}\ge\dfrac{15}{2}\)
\(\Rightarrow minP=\dfrac{15}{2}\Leftrightarrow a=\dfrac{1}{3};b=\dfrac{4}{5};c=\dfrac{3}{2}\)
Mấy câu có thêm dòng trích từ mấy đề quốc gia, quốc tế gì gì đó đâm ra nản luôn.
C23 cách khác: Điểm rơi \(a=\dfrac{1}{3};b=\dfrac{4}{5};c=\dfrac{3}{2}\) nên ta đặt \(a=\dfrac{1}{3}x;b=\dfrac{4}{5}y;c=\dfrac{3}{2}z\).
Ta có \(21ab+2bc+8ca\le12\Leftrightarrow\dfrac{28}{5}xy+\dfrac{12}{5}yz+4zx\le12\Leftrightarrow7xy+3yz+5zx\le15\).
Áp dụng bất đẳng thức AM - GM: \(15\ge7ab+3bc+5ca\ge15\sqrt[15]{\left(xy\right)^7.\left(yz\right)^3.\left(zx\right)^5}=15\sqrt[15]{x^{12}y^{10}z^8}\)
\(\Rightarrow x^6y^5z^4\le1\);
\(P=\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}=3x+\dfrac{5}{2}y+2z=\dfrac{1}{2}\left(\dfrac{6}{x}+\dfrac{5}{y}+\dfrac{4}{z}\right)\ge\dfrac{1}{2}.15\sqrt[15]{\left(\dfrac{1}{x}\right)^6.\left(\dfrac{1}{y}\right)^5.\left(\dfrac{1}{z}\right)^4}=\dfrac{15}{2}.\sqrt[15]{\dfrac{1}{x^6y^5z^4}}\ge\dfrac{15}{2}\).
Đẳng thức xảy ra khi \(x=y=z=1\) tức \(a=\dfrac{1}{3};b=\dfrac{4}{5};c=\dfrac{3}{2}\).Vậy Min P = \(\dfrac{15}{2}\) khi \(a=\dfrac{1}{3};b=\dfrac{4}{5};c=\dfrac{3}{2}\).
P/s: Lời giải nhìn có vẻ đơn giản nhưng muốn tìm điểm rơi thì phải dùng bđt AM - GM suy rộng.
C27.Gọi AB là dây vuông góc với OP tại P , và dây CD là dây bất kỳ đi qua P vàkhông trùng với AB .
Kẻ \(OH\perp CD\)
\(\Delta OHP\) vuông tại H\(\Rightarrow\) OH < OP \(\Rightarrow\) CD > AB
Như vậy trong tất cả các dây đi qua P , dây vuông góc với OP tại P có độ dài nhỏ nhất.
nếu bạn làm họ , họ đả làm bạn chết
neu ban du giay giay dut ban chet