Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2n + 5 chia 2n + 3 dư 2
2n + 3 chia 2n + 1 dư 2
Không chứng minh được !
Đây là dạng toán về: Nguỵ biện về Toán học.
Nguỵ biện là sự cố ý suy luận sai, nhưng làm như là đúng. Chẳng hạn như : 1 + 1 =3
Bài toán có thể suy luận như sau:
Giải
1 + 1 = 3
2 = 3
Gỉa sử ta có đẳng thức:
14 + 6 - 20 = 21 + 9 - 30
Đặt thừa số chung ta có:
2 x ( 7 + 3 - 10 ) = 3 x ( 7 + 3 - 10 )
Theo toán học thì hai tích bằng nhau và có thừa số thứ hai bằng nhau thì thừa số thứ nhất bằng nhau.
Do đó:
2 = 3
Giải thích:
Sự thật 2 không thể bằng 3. Sai lầm trong lí luận của chúng ta là ở chỗ ta kết luận rằng: Hai tích bằng nhau và có thừa số thứ hai bằng nhau thì thừa số thứ nhất cũng bằng nhau. Điều đó không phải bao giờ cũng đúng.
Kết luận đó đúng khi và chỉ khi hai thừa số bằng nhau đó khác 0. Khi đó ta có thể chia 2 vế của đẳng thức cho số đó. Trong trường hợp thừa số đó bằng 0, thì luôn luôn có a x 0 = b x 0 với bất kì giá trị nào của a và b.
Vì vậy, ta không thể khẳng định được rằng a = b
( Từ ví dụ trên, bạn có thể tìm những sai lầm trong các " chứng minh ". )
1+1=3
Ta có:
0.(1+1)=0.3
Vì 2 tích bằng nhau và cùng có chung 1 thừa số là 0
⇒ 2 thừa số còn lại bằng nhau
⇒ 1+1=3
Vậy 1+1=3
1 + 1 = 3
2 = 3
Gỉa sử ta có đẳng thức:
14 + 6 - 20 = 21 + 9 - 30
Đặt thừa số chung ta có:
2 x ( 7 + 3 - 10 ) = 3 x ( 7 + 3 - 10 )
Theo toán học thì hai tích bằng nhau và có thừa số thứ hai bằng nhau thì thừa số thứ nhất bằng nhau.
Do đó:
2 = 3
1) A = 1+2+2\(^2\) + ... + \(2^{200}\)
2A = 2 + 2\(^2\) + 2\(^3\) + ... + 2\(^{201}\)
2A - A = 2 + 2\(^2\) +2\(^3\) + ... + \(2^{201}\) - 1 - 2 - ... - 2\(^{200}\)
A = 2\(^{201}\) - 1
A+1 = 2\(^{201}\)
Vậy a + 1 = 2\(^{201}\)
2) C = 3 + 3\(^2\) + 3\(^3\) + ... + 3\(^{2005}\)
3C = 3\(^2\) + 3\(^3\) + 3\(^4\) + ... + 3\(^{2006}\)
3C - C = \(3^2\) + 3\(^3\) + 3\(^4\) + ... + 3\(^{2006}\) - 3 - 3\(^2\) - 3\(^3\) - ... - 3\(^{2005}\)
2C = 3\(^{2006}\) - 3
2C+3 = 3\(^{2006}\)
Vậy 2C + 3 là luỹ thừa của 3 ( Đpcm )
Lại copy mạng
j đấy?? vâng người như tôi thì chỉ zậy thôi!!