Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ví dụ: phương trình (1) x - 1 = 3 có tập nghiệm S1 = {4}.
Nhân hai vế của phương trình (1) với x, ta được phương trình:
(x - 1)x = 3x (2)
⇔ (x - 1)x - 3x = 0
⇔ x(x - 4) = 0
Phương trình (2) có tập nghiệm là S2 = {0, 4}.
Vì S1 ≠ S2 nên hai phương trình (1) và (2) không tương đương.
Ví dụ: phương trình (1) x - 1 = 3 có tập nghiệm S1 = {4}.
Nhân hai vế của phương trình (1) với x, ta được phương trình:
(x - 1)x = 3x (2)
⇔ (x - 1)x - 3x = 0
⇔ x(x - 4) = 0
Phương trình (2) có tập nghiệm là S2 = {0, 4}.
Vì S1 ≠ S2 nên hai phương trình (1) và (2) không tương đương.
3. Với điều kiện nào của a thì phương trình ax + b = 0 là một phương trình bậc nhất? (a và b là hai hằng số).
Nhâ hai vế của một phương tình với cùng một biểu thức chứa ẩn thì có thể không được phương trình tương đương. VD:\(0=\frac{x^2+4x}{x}\)
Bất phương trình bậc nhất một ẩn có dạng: ax + b < 0 (hoặc ax + b > 0, ax + b ≤ 0, ax + b ≥ 0) trong đó a, b là hai số đã cho, a ≠ 0.
Ví dụ: 2x + 4 < 0 (hoặc 2x + 4 > 0, 2x + 4 ≤ 0, 2x + 4 ≥ 0)
Bất phương trình bậc nhất một ẩn có dạng: ax + b < 0 (hoặc ax + b > 0, ax + b ≤ 0, ax + b ≥ 0) trong đó a, b là hai số đã cho, a ≠ 0.
Ví dụ: 2x + 4 < 0 (hoặc 2x + 4 > 0, 2x + 4 ≤ 0, 2x + 4 ≥ 0)
a) Phương trình bậc nhất một ẩn là phương trình có dạng ax + b = 0 (với a ≠ 0)
Ví dụ: 2x + 4 = 0
a = 2; b = 4
b) Công thức tính thể tích hình hộp chữ nhật:
V = Sh
Với V là thể tích, S là diện tích 1 đáy, h là chiều cao
c)
Thể tích:
V = AB.AD.AA'
= 12 . 16 . 25 = 4800 (cm³)
a: ax+b=0(a<>0) là phương trình bậc nhất một ẩn
b: V=a*b*c
a,b là chiều dài, chiều rộng
c là chiều cao
c: V=12*16*25=4800cm3
Phương trình với ẩn u: 2u – 11 = 3(u+1)