K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

Gọi 4 phần cần chia là x,y,z,t.Theo đề :

x + y + z + t = 12 mà x : y : z : t = 3 : 5 : 7 : 9

=> \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{t}{9}=\frac{x+y+z+t}{3+5+7+9}=\frac{12}{24}=0,5\)(tính chất của dãy tỉ số bằng nhau)

=> x = 1,5 ; y = 2,5 ; z = 3,5 ; t = 4,5.Vậy 4 phần cần chia là 1,5 ; 2,5 ; 3,5 ; 4,5

3 tháng 8 2016

Gọi 4 phần là x,y,z,t

TA có:\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{t}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{t}{9}=\frac{x+y+z+t}{3+5+7+9}=\frac{12}{24}=\frac{1}{2}\)

\(\frac{x}{3}=\frac{1}{2}=>x=1,5\)

\(\frac{y}{5}=\frac{1}{2}=>y=\frac{5}{2}\)

\(\frac{z}{7}=\frac{1}{2}=>z=\frac{7}{2}\)

\(\frac{t}{9}=\frac{1}{2}=>t=\frac{9}{2}\)

5 tháng 10 2021

Bài 1:

Gọi 4 phần đó lần lượt là a, b, c, d.

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{d}{9}=\frac{a+b+c+d}{3+5+7+9}=\frac{12}{24}=\frac{1}{2}\)

\(\frac{a}{3}=\frac{1}{2}\Rightarrow a=\frac{3}{2}\)

\(\frac{b}{5}=\frac{1}{2}=\Rightarrow b=\frac{5}{2}\)

\(\frac{c}{7}=\frac{1}{2}\Rightarrow c=\frac{7}{2}\)

\(\frac{d}{9}=\frac{1}{2}\Rightarrow d=\frac{9}{2}\)

Bài 2:

Gọi mỗi cạnh của tam giác lần lượt là:x (cm) , y (cm) , z (cm) và x , y , z phải là số dương.

Ta có : \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\) và  \(x+y+z=40,5\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{x+y+z}{3+5+7}=\frac{40,5}{15}=2,7\)

\(\frac{x}{3}=2,7.3=8,1\frac{y}{5}=2,7.5=13,5\frac{z}{7}=2,7.7=18,9\)

Vậy mỗi cạnh của tam giác lần lượt là: \(8,1;13,5;18,9\)

2 tháng 1 2022

Answer:

Câu 1:

Gọi ba phần được chia từ số 470 lần lượt là x, y, z 

Có: Ba phần tỉ lệ nghịch với 3, 4, 5

\(\Rightarrow x3=y4=z5\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{12}\) và \(x+y+z=470\)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{20+15+12}=\frac{470}{47}=10\)

\(\Rightarrow\hept{\begin{cases}x=200\\y=150\\z=120\end{cases}}\)

Câu 2: 

Gọi ba phần được chia từ số 555 lần lượt là x, y, z

\(\Rightarrow\hept{\begin{cases}x+y+z=55\\4x=5y=6z\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y+z=55\\\frac{x}{15}=\frac{y}{12}=\frac{z}{10}=\frac{x}{15+12+10}=\frac{555}{35}=\frac{111}{7}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1665}{7}\\y=\frac{1332}{7}\\z=\frac{1110}{7}\end{cases}}\)

Câu 3:

Gọi ba phần được chia từ số 314 lần lượt là x, y, z

\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2}{3}x=\frac{2}{5}y=\frac{3}{7}z\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2x}{3}=\frac{2y}{5}=\frac{3z}{7}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{x}{9}=\frac{y}{15}=\frac{z}{14}=\frac{x+y+z}{9+15+14}=\frac{314}{38}=\frac{157}{19}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1413}{19}\\y=\frac{2355}{19}\\z=\frac{2198}{19}\end{cases}}\)

17 tháng 7 2016

Bài 1:

Gọi 4 phần đó lần lượt là a, b, c, d.

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{d}{9}=\frac{a+b+c+d}{3+5+7+9}=\frac{12}{24}=\frac{1}{2}\)

\(\frac{a}{3}=\frac{1}{2}\Rightarrow a=\frac{3}{2}\)

\(\frac{b}{5}=\frac{1}{2}\Rightarrow b=\frac{5}{2}\)

\(\frac{c}{7}=\frac{1}{2}\Rightarrow c=\frac{7}{2}\)

\(\frac{d}{9}=\frac{1}{2}\Rightarrow d=\frac{9}{2}\)

Bài 2:

Gọi 3 cạnh của tam giác lần lượt là a, b, c.

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{40,5}{15}=2,7\)

\(\frac{a}{3}=2,7\Rightarrow a=2,7\times3=8,1\)

\(\frac{a}{5}=2,7\Rightarrow2,7\times5=13,5\)

\(\frac{c}{7}=2,7\Rightarrow c=2,7\times7=18,9\)

17 tháng 7 2016

Bài 1:

Gọi số 12 thành 4 phần lần lượt là:a,b,c,dvà a,b,c,d phải là số dương.

Ta có: \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{d}{9}\) và a+b+c+d=12

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{d}{9}=\frac{a+b+c+d}{3+5+7+9}=\frac{12}{24}=0,5\)

  • \(\frac{a}{3}=0,5.3=1,5\)
  • \(\frac{b}{5}=0,5.5=2,5\)
  • \(\frac{c}{7}=0,5.7=3,5\)
  • \(\frac{d}{9}=0,5.9=4,5\)

Vậy số 12 thành 4 phần lần lượt là: 1,5;2,5;3,5;4,5.

Bài 2:

Gọi mỗi cạnh của tam giác lần lượt là:x(cm),y(cm),z(cm) và x,y,z phải là số dương.

Ta có :\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\) và x+y+z=40,5

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{x+y+z}{3+5+7}=\frac{40,5}{15}=2,7\)

  • \(\frac{x}{3}=2,7.3=8,1\)
  • \(\frac{y}{5}=2,7.5=13,5\)
  • \(\frac{z}{7}=2,7.7=18,9\)

Vậy mỗi cạnh của tam giác lần lượt là: 8,1;13,5;18,9.

eoeo ^...^ vui ^_^

 

 

2 tháng 7 2018

a ta co xét ti le xích  1/3=4/12 nhan hai ti so cua ti le thức với  3*12 ta dược 1/3*(3*12)=4/12*(3*12)=>1*12=4*3

Cung de Ma Nho tích cho minh nha con cau b chua lam thong cảm

27 tháng 4 2017

Gọi ba phần cần tìm lần lượt là a,b,c

Theo đề, ta có: \(\dfrac{1}{5}a=\dfrac{10}{3}b=\dfrac{4}{5}c\)

=>\(\dfrac{a}{5}=\dfrac{b}{\dfrac{5}{4}}=\dfrac{c}{\dfrac{3}{10}}\)

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{a}{5}=\dfrac{b}{\dfrac{5}{4}}=\dfrac{c}{\dfrac{3}{10}}=\dfrac{a+b+c}{5+\dfrac{5}{4}+\dfrac{3}{10}}=\dfrac{786}{\dfrac{131}{20}}=120\)

=>a=600; b=150; c=36

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{\dfrac{3}{5}}=\dfrac{b}{\dfrac{7}{4}}=\dfrac{c}{\dfrac{10}{9}}=\dfrac{a+b+c}{\dfrac{3}{5}+\dfrac{7}{4}+\dfrac{10}{9}}=\dfrac{195}{\dfrac{623}{180}}=\dfrac{35100}{623}\)

Do đó: a=21060/623; b=8775/89; c=39000/623

15 tháng 9 2018

Giả sử 48 chia thành bốn phần là x; y; z; t tỉ lệ với các số 3; 5; 7; 9

Ta có:Trắc nghiệm Chương 1 Đại Số 7 (Phần 2) - Bài tập Toán lớp 7 chọn lọc có đáp án, lời giải chi tiết

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

Trắc nghiệm Chương 1 Đại Số 7 (Phần 2) - Bài tập Toán lớp 7 chọn lọc có đáp án, lời giải chi tiết

Do đó: x = 6; y = 10; z = 14; t = 18

Chọn đáp án D.

22 tháng 5 2019

#)Trả lời :

Câu 1 :

a) Gọi ba phần đó là a, b, c

    Theo đầu bài, ta có : a, b, c tỉ lệ thuận với 3; 4; 5 => \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)và a + b + c = 552

    Áp dụng tính chất dãy tỉ số bằng nhau ( đến đây bn tự lm típ hen )

b) Gọi ba phần đó là a, b, c

    Theo đầu bài, ta có : a, b, c tỉ lệ nghịch với 3, 4, 6 => a, b, c tỉ lệ nghịch với \(\frac{1}{3};\frac{1}{4};\frac{1}{6}\)

    => \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\)và a + b + c = 315 

   Áp dụng tính chất dãy tỉ số bằng nhau ( đến đây tự lm típ hen :D )

Câu 2 :

   \(\frac{x}{11}=\frac{y}{12}\Rightarrow\frac{2x}{22}=\frac{y}{12}\left(1\right)\)

   \(\frac{y}{3}=\frac{z}{7}\Rightarrow\frac{y}{12}=\frac{z}{28}\left(2\right)\)

   Từ (1) và (2) suy ra \(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}\)

   Áp dụng tính chất dãy tỉ số bằng nhau :

   \(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}=\frac{2x-y+z}{22-12+28}=\frac{152}{38}\)

\(\Rightarrow x=44;y=48;z=112\)

    #~Will~be~Pens~#

25 tháng 5 2019

1a) Gọi ba phần đó là x, y, z.

Vì x, y, z tỉ lệ với 3, 4, 5 nên \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Áp dụng tính chất của dãy các tỉ số bằng nhau, ta có:

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{552}{12}=46\)

\(\Rightarrow\hept{\begin{cases}x=46.3=138\\y=46.4=184\\z=46.5=230\end{cases}}\)

Vậy 3 phần đó là 138, 184, 230