K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2019

a)a(a-1) chia hêt 2

b) a(a^2-1)=(a-1)a(a+1) chia hết 3

c) a(a^4-1)=a(a^2-1)(a^2+1)=a(a^2-1)(a^2-4+5)=(a-2)(a-1)a(a+1)(a+2)+5a(a^-1) chia hết 5

đây là định lí nhỏ Phéc-ma a^n-a chia hết n

8 tháng 9 2019

a) a2-a=a(a-1)

Vì a,a-1 là 2 số nguyên liên tiếp nên sẽ chia hết cho 2

=>đpcm

b)a3-a=a(a2-1)=a(a-1)(a+1)

Vì a,a-1,a+1 là 3 số nguyên liên tiếp nên sẽ chia hết cho 3

=>đpcm

c)a5-a=a(a4-1)=a(a2-1)(a2+1)=a(a-1)(a+1)(a2+1)=a(a-1)(a+1)(a2-4+5)=a(a-1)(a+1)(a-2)(a+2)+5a(a-1)(a+1)

Ta có

      a,a-1,a+1,a-2,a+2 là 5 số nguyên liên tiếp nên chia hết cho 5

      5a(a-1)(a+1) chia hết cho 5( 5 chia hết cho 5)

=>đpcm

11 tháng 9 2019

\(a^3+3a^2+2a=a\left(a^2+3a+2\right)\)

\(=a\left(a^2+2a+a+2\right)\)

\(=a\left[a\left(a+2\right)+\left(a+2\right)\right]=a\left(a+1\right)\left(a+2\right)\)

Tích 3 số liên tiếp chia hết cho 3 và có 1 số chẵn và (2,3) = 1 nên \(a^3+3a^2+2a⋮6\left(đpcm\right)\)

1 tháng 3 2020

Câu 1:

a) \(\left(x^2+y^2-36\right)^2-4x^2y^2\)

\(=\left(x^2+y^2-36\right)^2-\left(2xy\right)^2\)

\(=\left(x^2+y^2+2xy-36\right)\left(x^2+y^2-2xy-36\right)\)

\(=\left[\left(x+y\right)^2-36\right]\left[\left(x-y\right)^2-36\right]\)

\(=\left(x+y+6\right)\left(x+y-6\right)\left(x-y+6\right)\left(x-y-6\right)\)

b) \(\left(x^2+x\right)^2-5\left(x^2+x\right)+6\)

\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-3\left(x^2+x\right)+6\)

\(=\left(x^2+x\right)\left(x^2+x-2\right)-3\left(x^2+x-2\right)\)

\(=\left(x^2+x-3\right)\left(x^2+x-2\right)\)

\(=\left(x^2+x-3\right)\left(x-2\right)\left(x+1\right)\)

1 tháng 3 2020

1) a) (x2 + y2 - 36)2 - 4x2y2 

= (x2 + y2 - 36 - 2xy)(x2 + y2 - 36 + 2xy)

= [(x - y)2 - 36][(x + y)2 - 36]

= (x - y - 6)(x - y  + 6)(x + y + 6)(x + y - 6)

b) (x2 + x)2 - 5(x2 + x) + 6

= (x2 + x)2 - 2(x2 + x) - 3(x2 + x) + 6

= (x2  + x)(x2 + x - 2) - 3(x2 + x - 2)

= (x2 + x - 3)(x2 + 2x - x - 2)

=  (x2 + x - 3)(x - 1)(x + 2)

2) Đặt tính là đc

3 tháng 8 2019

\(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right).\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5a\left(a-1\right)\left(a+1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)

Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)là tích của 5 số tự nhiên liên tiếp 

\(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)\(⋮\)\(5\)

Mà \(5\)\(⋮\)\(5\)\(\Rightarrow5a\left(a-1\right)\left(a+1\right)\)\(⋮\)\(5\)

\(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)\(⋮\)\(5\)

Hay \(a^5-a\)\(⋮\)\(5\)\(\left(đpcm\right)\)