K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2018

 

 

Vậy hàm số nghịch biến trên khoảng

Chọn D.

28 tháng 6 2018

Đáp án: A.

NV
22 tháng 6 2021

1.

\(f'\left(x\right)=\left(x^2-1\right)\left(x-2\right)^2\left(x-3\right)\) có các nghiệm bội lẻ \(x=\left\{-1;1;3\right\}\)

Sử dụng đan dấu ta được hàm đồng biến trên các khoảng: \(\left(-1;1\right);\left(3;+\infty\right)\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right);\left(1;3\right)\)

2.

\(y'=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=1\end{matrix}\right.\)

Lập bảng xét dấu y' ta được hàm đồng biến trên \(\left(-1;0\right);\left(1;+\infty\right)\)

Hàm nghịch biến trên \(\left(-\infty;-1\right);\left(0;1\right)\)

7 tháng 8 2023

\(y'=0\Leftrightarrow4x^3-4x=0\Leftrightarrow4x\left(x^2-1\right)=0\\ \Leftrightarrow x=\pm1.và.x=0\)

\(HSNB:\left(-\infty;-1\right)\cup\left(0;1\right)\\ HSĐB:\left(-1;0\right)\cup\left(1;+\infty\right)\)

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Lời giải:

TXĐ: $[0;2]$. Hàm nghịch biến khi \(y'=\frac{1-x}{\sqrt{2x-x^2}}<0\Leftrightarrow \left\{\begin{matrix} 1-x< 0\\ 2x-x^2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x>1\\ 0< x< 2\end{matrix}\right.\)

$\Leftrightarrow 1< x< 2$

Đáp án C.

 

NV
18 tháng 6 2021

1.

\(y'=2cosx-2sin2x=2cosx-4sinx.cosx=2cosx\left(1-2sinx\right)\)

\(y'=0\Rightarrow\left[{}\begin{matrix}cosx=0\\sinx=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}\\x=\dfrac{\pi}{6}\\x=\dfrac{5\pi}{6}\end{matrix}\right.\)

Hàm đồng biến trên các khoảng \(\left(0;\dfrac{\pi}{6}\right)\) và \(\left(\dfrac{\pi}{2};\dfrac{5\pi}{6}\right)\)

NV
18 tháng 6 2021

2.

Xét hàm \(f\left(x\right)=x^2-2x-3\)

\(f\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

\(f'\left(x\right)=2x-2=0\Rightarrow x=1\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;3\right)\)

7 tháng 7 2019

Đáp án D

NV
19 tháng 5 2021

ĐKXĐ: \(0\le x\le2\)

\(y'=\dfrac{1-x}{\sqrt{2x-x^2}}-1=\dfrac{1-x-\sqrt{2x-x^2}}{\sqrt{2x-x^2}}\)

\(y'=0\Rightarrow\sqrt{2x-x^2}=1-x\) (\(x\le1\))

\(\Rightarrow2x-x^2=x^2-2x+1\Rightarrow x=\dfrac{2-\sqrt{2}}{2}\)

Hàm nghịch biến trên \(\left(\dfrac{2-\sqrt{2}}{2};2\right)\) và các tập con của nó

D đúng

Bạn ghi lại hàm số đi bạn

7 tháng 7 2023

rồi đấy ạ!

22 tháng 5 2019