Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+3m+5\ne0\) ; \(\forall x\)
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+3m+5\right)< 0\)
\(\Leftrightarrow-5m-4< 0\)
\(\Leftrightarrow m>-\dfrac{4}{5}\)
b.
\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+m-6\ge0\) ;\(\forall x\)
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+m-6\right)\le0\)
\(\Leftrightarrow-3m+7\le0\)
\(\Rightarrow m\ge\dfrac{7}{3}\)
c.
\(x^2-2\left(m+3\right)x+m+9>0\) ;\(\forall x\)
\(\Leftrightarrow\Delta'=\left(m+3\right)^2-\left(m+9\right)< 0\)
\(\Leftrightarrow m^2+5m< 0\Rightarrow-5< m< 0\)
Tìm tập xác định của hàm số:
a) \(y=\frac{3-x}{\sqrt{x-4}}\)
Điều kiện xác định:
\(x-4>0\)
\(\Leftrightarrow x>4\)
\(\Rightarrow\)Tập xác định: \(D=\left(4;+\infty\right).\)
Vậy tập xác định của hàm số là: \(D=\left(4;+\infty\right).\)
b) \(y=\frac{x}{\left(x-1\right)\sqrt{3-x}}\)
Điều kiện xác định:
\(\hept{\begin{cases}x-1\ne0\\3-x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\-x>-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x< 3\end{cases}}\)
\(\Rightarrow\)Tập xác định: \(D=\left(-\infty;3\right)\backslash\left\{1\right\}.\)
Vậy tập xác định của hàm số là: \(D=\left(-\infty;3\right)\backslash\left\{1\right\}.\)
\(\left\{{}\begin{matrix}9-3\left|x\right|\ge0\\9x^2-1>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3\le x\le3\\\left[{}\begin{matrix}x>\frac{1}{3}\\x< -\frac{1}{3}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{1}{3}< x\le\frac{1}{3}\\-3\le x< -\frac{1}{3}\end{matrix}\right.\)
\(\Rightarrow D_1=[-3;-\frac{1}{3})\cup(\frac{1}{3};3]\)
\(\left\{{}\begin{matrix}x+2\ge0\\x\left|x\right|+4\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\ne-2\end{matrix}\right.\) \(\Rightarrow x>-2\)
\(\Rightarrow D_2=\left(-2;+\infty\right)\)
\(\Rightarrow A=\left\{-1;1;2;3\right\}\)