K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 3 2021

\(y'=x^2-2x+1=\left(x-1\right)^2\ge0\) ;\(\forall x\in R\)

\(\Rightarrow\) Hàm đồng biến trên R

y'=1/3*3x^2+1/2*2x(m-1)+(2m-1)

=x^2+x(m-1)+2m-1

a: y đồng biến trên R thì y'>0 với mọi x thuộc R

Δ=(m-1)^2-4(2m-1)

=m^2-2m+1-8m+4=m^2-10m+5

Để y'>0 với mọi x thuộc R thì m^2-10m+5<0

=>5-2*căn 5<m<5+2căn 5

b: y đồng biến trên (-vô cực;-2) và (0;1) khi y'>0 với mọi x thuộc (-vô cực;-2) và (0;1)

y'=x^2+x(m-1)+2m-1

=x^2+xm-x+2m-1

=m(x+2)+x^2-x-1

y'>0 với x thuộc (-vô cực;-2)

=>m>-x^2+x+1/(x+2) với x thuộc (vô cực;-2)

g(x)=-x^2+x+1/(x+2)

g'=(-x^2+x+1)'(x+2)-(-x^2+x+1)(x+2)'/(x+2)^2

=(x+2+x^2-x-1)/(x+2)^2=(x^2+1)/(x+2)^2>0 với mọi x

=>m thuộc (-vô cực;-2)

Tương tự, ta cũng được: m thuộc (0;1)

14 tháng 11 2017

Đáp án A

NV
18 tháng 3 2021

\(y'=-3x^2+6x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Hàm đồng biến trên \(\left(0;2\right)\)

25 tháng 3 2017

5 tháng 10 2017

Chọn C

Quan sát đồ thị ta thấy hàm số y = f(x) đạt giá trị nhỏ nhất trên [-1;3] là -1 tại điểm x = =-1 và đạt giá trị lớn nhất trên[-1;3] là 4 tại điểm x = 3. Do đó M = 4, m = -1.

Giá trị M - m = 4 - (-1) = 5.

9 tháng 11 2017

Chọn C