K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2017

Chọn A

Dựa vào đồ thị ta thấy:

Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [-2;1] lần lượt là f(0) và f(-2).

Hàm số đạt cực đại tại x = 0.

Hàm số nhận giá trị âm ∀ x ≠ 0 và bằng 0 tại x = 0.

10 tháng 2 2019

Chọn D

Dựa vào hình vẽ ta có : M = 3, m = -2. Do đó: M + m = 1

26 tháng 12 2019

Đáp án B

5 tháng 10 2017

Chọn C

Quan sát đồ thị ta thấy hàm số y = f(x) đạt giá trị nhỏ nhất trên [-1;3] là -1 tại điểm x = =-1 và đạt giá trị lớn nhất trên[-1;3] là 4 tại điểm x = 3. Do đó M = 4, m = -1.

Giá trị M - m = 4 - (-1) = 5.

23 tháng 1 2017

Chọn A

Ta có 

2 tháng 2 2018

Chọn A

Hàm số f(x) = (x-6) x 2 + 4  xác định và liên tục trên đoạn [0;3].

Suy ra 

 với a là số nguyên và b, c là các số nguyên dương nên 

a = - 12, b = 3, c = 13. Do đó: S = a + b + c = 4.

18 tháng 2 2019

Chọn C

28 tháng 3 2021

TXĐ: \(D=R\)

\(f'\left(x\right)=4x^3-24x\)

\(f'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{6}\\x=-\sqrt{6}\left(loai\right)\end{matrix}\right.\)

\(\begin{matrix}f\left(0\right)=-1\\f\left(\sqrt{6}\right)=-37\\f\left(9\right)=5588\end{matrix}\)

suy ra chọn D

 

14 tháng 11 2019

+ Xét hàm số f( x) = x3- x2+ ( m2+ 1) x- 4m- 7  trên đoạn [ 0; 2]

Ta có f’ (x) = 3x2- 2x+ m2+ 1= 3( x-1/3) 2+ m2+ 2/3> 0 .

+ Suy ra hàm số f(x)  đồng biến trên

  0 ; 2 ⇒ m i n [ 0 ; 2 ]   f ( x ) = f ( 0 ) = - 4 m - 7 m a x [ 0 ; 2 ]   f ( x ) = f ( 2 ) = 2 m 2 - 4 m - 1

+ Khi đó

m a x [ 0 ; 2 ]   y = m a x [ 0 ; 2 ]   f ( x ) = m a x - 4 m - 7 ; 2 m 2 - 4 m - 1 ≤ 15 ⇔ - 4 m - 7 ≤ 15 2 m 2 - 4 m - 1 ≤ 15 ⇔ - 11 2 ≤ m ≤ 2 2 m 2 - 4 m - 16 ≤ 0 ⇔ - 11 2 ≤ m ≤ 2 - 2 ≤ m ≤ 4 ⇔ - 2 ≤ m ≤ 2 → m ∈ ℤ m ∈ ± 2 ; ± 1 ; 0

Vậy có 5 giá trị thoả mãn.

Chọn C.

1 tháng 6 2019

Chọn A

* Hàm số y = x -  e 2 x  xác định trên [-1;1]

* Ta có : 

3 tháng 3 2017

Đáp án B.