Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Phương pháp:
Sử dụng phương pháp tìm GTNN, GTLN của hàm số.
Cách giải:
Chọn A
Tập xác định D = [0;4]
Ta có
Vì
=> Giá trị lớn nhất của hàm số là y = 2 khi x = 2
Mặt khác
=> Giá trị nhỏ nhất của hàm số là y = 0 khi x = 4 hoặc
Vậy hàm số có giá trị lớn nhất và giá trị nhỏ nhất.
Chọn B
Nếu m = 1 thì y = 1 (không thỏa mãn tổng của giá trị lớn nhất và nhỏ nhất bằng 8)
Nếu m ≠ 1 thì hàm số đã cho liên tục trên [1;2] và
Khi đó đạo hàm của hàm số không đổi dấu trên đoạn [1;2]
Do vậy
Chọn D.
Xét hàm số hàm số liên tục trên R
Có
đồng biến trên [2;4]
Nên
Do đó
Ta có
Dấu bằng xảy ra
Vậy
Đáp án: A.
Tập xác định: D = R \{3}
∀x ∈ D.
Do đó f(x) nghịch biến trên (- ∞ ; 3) và (3; + ∞ ).
Ta thấy [0;2] ⊂ (- ∞ ;3). Vì vậy
max f(x) = f(0) = 1/3, min f(x) = f(2) = -3.
Đáp án: D.
Trên khoảng (0; π/2), sin(x + π/4) ≤ 1;
Dấu "=" xảy ra ⇔ x = π/4
Suy ra giá trị nhỏ nhất của hàm số là min y = y(π/4) = 2 /2.
Đáp án D