Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x, y (giờ) lần lượt là thời gian mà một cần cẩu lớn và một cần cẩu nhỏ làm một mình xong công việc. Điều kiện: y > x > 4
Như vậy, trong 1 giờ cần cẩu lớn làm được 1/x (công việc), cần cẩu nhỏ làm được 1/y (công việc).
Trong 1 giờ, hai cần cẩu lớn và năm cần cẩu nhỏ làm được 1 : 4 = 1/4 (công việc)
Ta có phương trình: 2/x + 5/y = 1/4
Hai cần cẩu lớn làm trong 6 giờ và năm cần cẩu nhỏ làm trong 3 giờ nữa thì xong việc, ta có phương trình:
12/x + 15/y = 1
Ta có hệ phương trình:
Ta có: ⇔ x = 24
⇔ y = 30
Giá trị của x và y thỏa điều kiện bài toán.
Vậy một cần cẩu loại lớn làm xong công việc trong 24 giờ, một cần cẩu loại nhỏ làm xong công việc trong 30 giờ.
Gọi thời gian làm việc một mình xong việc của cần cầu bé là x (giờ) và cần cẩu lớn là y (giờ) với x;y>0
Trong mỗi giờ một cần cẩu bé làm được \(\dfrac{1}{x}\) phần công việc, một cần cẩu lớn làm được \(\dfrac{1}{y}\) phần công việc
Do 7 cần cẩu cùng làm thì 4 giờ xong việc nên:
\(4.\left(5.\dfrac{1}{x}+2.\dfrac{1}{y}\right)=1\Rightarrow\dfrac{5}{x}+\dfrac{2}{y}=\dfrac{1}{4}\)
Do 5 cần cầu bé làm 2 giờ sau đó 2 cần cẩu lớn cùng làm 3 giờ là xong nên:
\(2.\dfrac{5}{x}+3\left(\dfrac{5}{x}+\dfrac{2}{y}\right)=1\Rightarrow\dfrac{25}{x}+\dfrac{6}{y}=1\)
Ta được hệ: \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{2}{y}=\dfrac{1}{4}\\\dfrac{25}{x}+\dfrac{6}{y}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{40}\\\dfrac{1}{y}=\dfrac{1}{16}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=40\\y=16\end{matrix}\right.\)
Gọi thời gian một cần cẩu lớn làm một mình xong việc là \(x\) (giờ), \(x>0\)
Gọi thời gian một cần cẩu lớn làm một mình xong việc là \(y\) (giờ), \(y>0\)
Gọi thời gian mỗi đội làm một mình để xong công việc lần lượt là \(x,y\left(h\right);x,y>0\).
Mỗi giờ mỗi đội làm được lần lượt số phần công việc là: \(\frac{1}{x},\frac{1}{y}\)công việc.
Theo bài ra ta có hệ phương trình:
\(\hept{\begin{cases}4\left(\frac{1}{x}+\frac{1}{y}\right)=1\\3\left(\frac{1}{x}+\frac{1}{y}\right)+\frac{3}{y}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{6}\\\frac{1}{y}=\frac{1}{12}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=12\end{cases}}\left(tm\right)\).