Cho đường tròn ( O) và điểm M nằm ngoài (O). Vẽ 2 tiếp tuyến MA và MB với (O). Lấy N bấ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2021

M A C D B O K N E F H I

a/ 

Ta có A và B cùng nhìn MO dưới 1 góc vuông => B và B thuộc đường tròn đường kính MO => A, B, M, O cùng nằm trên 1 đường tròn

b/

Ta có

\(C_{MCD}=MC+MD+CD=\left(MC+NC\right)+\left(MD+ND\right).\) 

Ta có

MA = MB (hai tiếp tuyến cùng xp từ 1 điểm)

NC=AC; ND = BD (hai tiếp tuyến cùng xp từ 1 điểm)

\(\Rightarrow C_{MCD}=\left(MC+AC\right)+\left(MD+BD\right)=MA+MB=2MA\)

M cố định; A cố định => MA không đổi \(\Rightarrow C_{MCD}=2MA\) không đổi => \(C_{MCD}\) không phụ thuộc vị trí điểm N

c/

Xét tg vuông NOC và tg vuông AOC có

OC chung

NC = AC (cmt)

\(\Rightarrow\Delta NOC=\Delta AOC\) (hai tg vuông có cạnh huyền và cạnh góc vuông bằng nhau) \(\Rightarrow\widehat{OCA}=\widehat{OCD}\) (1)

Gọi P là giao OC với (O) và Q là giao của OD với (O)

Ta có

sđ cung AP = sđ cung NP; sđ cung BQ = sđ cung NQ (hai tiếp tuyến cùng xp từ 1 điểm thì đường nối điểm đó với tâm đường tròn chia đôi cung giới hạn bởi hai tiếp điểm)

=> sđ cung NP = 1/2 sđ cung AN; sđ cung NQ = 1/2 sđ cung BN

=> sđ cung NP + sđ cung NQ = sđ cung PQ = 1/2 sđ cung AN + 1/2 sđ cung BN = 1/2 sđ cung AB

\(\Rightarrow\widehat{COD}=sđ\) cung PQ = 1/2 sđ cung AB (góc ở tâm)

Ta có \(\widehat{CAB}=\)1/2 sđ cung AB (góc giữa tiếp tuyến và dây cung)

\(\Rightarrow\widehat{CAB}=\widehat{COD}\) (2)

Xét tg CKA và tg ODC có

\(\widehat{OCA}=\widehat{OCD;}\widehat{CAB}=\widehat{COD}\) => tg CKA đồng dạng với tg ODC (g.g.g)

d/

Gọi I là giao của EF với MA

Xét tg OAB và tg OEF có

OA = OE; OB = OF (đều là bán kính (O))

\(\widehat{AOB}=\widehat{EOF}\) (góc đối đỉnh)

\(\Rightarrow\Delta OAB=\Delta OEF\left(c.g.c\right)\Rightarrow\widehat{BAO}=\widehat{IEO}\) => AB // EF (hai đường thẳng bị cắt bởi 1 đường thẳng tạo thành 2 góc so le trong = nhau thì // với nhau)

Ta có \(MO\perp AB\) (Hai tiếp tuyến cùng xp từ 1 điểm thì đường nối điểm đó với tâm đường tròn vuông góc với dây cung nối 2 tiếp điểm)

\(\Rightarrow MO\perp EF\) (đường thẳng vuông góc với 1 trong 2 đường thẳng // với nhau thì cũng vuông góc với đường thẳng còn lại)

Xét \(\Delta MIE\) có

\(EA\perp MI;MO\perp EF\) => O là trực tâm của tg MIE => OH là đường cao thuộc cạnh ME => OH phải đi qua I => EF; MA; OH đồng quy tại I

  

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:a) AP là phân giác của góc BAQb) CP và BR song song với nhau2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax...
Đọc tiếp

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:
a) AP là phân giác của góc BAQ
b) CP và BR song song với nhau

2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyến thứ hai MB với đường tròn (O). gọi I là trung điểm MA, K là giao điểm của BI với (O)
a) Chứng minh các tam giác IKA và IAB đồng dạng. Từ đó suy ra tam giác IKM đồng dạng với tam giác IMB
b) Giả sử MK cắt (O) tại C. Chứng minh BC song song MA

3. Cho tam giác ABC nội tiếp đường tròn (O) và AB<AC. Đường tròn (I) đi qua B và C, tiếp xúc với AB tại B cắt đường thẳng AC tại D. Chứng minh OA và BD vuông góc với nhau.

4.Cho hai đường tròn (O) và (I) cắt nhau tại C và D, trong đó tiếp tuyến chung MN song song với cát tuyến EDF, M và E thuộc (O), N và F thuộc (I), D nằm giữa E và F. Gọi K ,H theo thứ tự là giao điểm của NC,MC và EF. Gọi G là giao điểm của EM ,FN. Chứng minh:
a) Các tam giác GMN và DMN bằng nhau
b) GD là đường trung trực của KH
Làm ơn giúp mình với !!! Chút nữa là mình đi học rồi !!!! Cảm ơn trước !!!

0
29 tháng 7 2018

a, ∆IAK:∆IBA =>  I A I B = I K I A

Mà IA = IM =>  I M I B = I K I M

=> ∆IKM:∆IMB

b, Chứng minh được:  I M K ^ = K C B ^ => BC//MA(đpcm)

a: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OM là đường trung trực của AB

b: Xét ΔOAM vuông tại A có \(sinAMO=\dfrac{OA}{OM}=\dfrac{1}{2}\)

nên \(\widehat{AMO}=30^0\)

Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MO là phân giác của góc AMB

=>\(\widehat{AMB}=2\cdot\widehat{AMO}=60^0\)

Xét ΔMAB có MA=MB và \(\widehat{AMB}=60^0\)

nên ΔMAB đều

c: Xét (O) có

CA,CP là các tiếp tuyến

Do đó: CA=CP và OC là phân giác của góc AOP

Xét (O) có

DB,DP là các tiếp tuyến

Do đó; DB=DP và OD là phân giác của góc BOP

ΔOAM vuông tại A

=>\(OA^2+AM^2=OM^2\)

=>\(AM^2=\left(2R\right)^2-R^2=3R^2\)

=>\(AM=R\sqrt{3}\)

Chu vi tam giác MCD là:

\(C_{MCD}=MC+CD+MD\)

\(=MC+CP+MD+DP\)

\(=MC+CA+MD+DB\)

=MA+MB=2MA=\(=R\sqrt{3}\cdot2=2R\sqrt{3}\)

d: Ta có: OC là phân giác của góc AOP

=>\(\widehat{AOP}=2\cdot\widehat{COP}\)

Ta có: OD là phân giác của góc BOP

=>\(\widehat{BOP}=2\cdot\widehat{DOP}\)

Xét tứ giác OAMB có

\(\widehat{OAM}+\widehat{OBM}+\widehat{AMB}+\widehat{AOB}=360^0\)

=>\(\widehat{AOB}+60^0+90^0+90^0=360^0\)

=>\(\widehat{AOB}=120^0\)

Ta có: \(\widehat{AOP}+\widehat{BOP}=\widehat{AOB}\)

=>\(2\cdot\left(\widehat{COP}+\widehat{DOP}\right)=120^0\)

=>\(2\cdot\widehat{COD}=60^0\cdot2\)

=>\(\widehat{COD}=60^0\)

12 tháng 1 2024

Thank youuu :3