Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
\(A-4=2x+3y\Rightarrow\left(A-4\right)^2=\left(2x+3y\right)^2\)
\(\left(A-4\right)^2\le\left(2^2+3^2\right)\left(x^2+y^2\right)=676\)
\(\Rightarrow-26\le A-4\le26\)
\(\Rightarrow-22\le A\le30\)
\(A_{max}=30\) khi \(\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)
\(A_{min}=-22\) khi \(\left\{{}\begin{matrix}x=-4\\y=-6\end{matrix}\right.\)
\(2x+3y=1\Rightarrow y=\frac{1-2x}{3}\)
Do \(x;y\ge0\Rightarrow0\le x\le\frac{1}{2}\)
\(A=x^2+3\left(\frac{1-2x}{3}\right)^2=x^2+\frac{1}{3}\left(4x^2-4x+1\right)=\frac{7}{3}x^2-\frac{4}{3}x+\frac{1}{3}\)
\(A=\frac{7}{3}\left(x-\frac{2}{7}\right)^2+\frac{1}{7}\ge\frac{1}{7}\)
\(\Rightarrow A_{min}=\frac{1}{7}\) khi \(x=\frac{2}{7};y=\frac{1}{7}\)
Mặt khác \(A=\frac{1}{3}x\left(7x-4\right)+\frac{1}{3}\)
Do \(x\le\frac{1}{2}\Rightarrow7x-4< 0\Rightarrow x\left(7x-4\right)\le0\)
\(\Rightarrow A\le\frac{1}{3}\Rightarrow A_{max}=\frac{1}{3}\) khi \(x=0;y=\frac{1}{3}\)
\(A=\left(x^3+y^3+xy\left(x+y\right)\right)-xy\left(x+y\right)+xy\)
=> \(A=\left(x+y\right)\left(x^2+y^2\right)-xy.1+xy\)
=> \(A=x^2+y^2-xy+xy\)
=> \(A=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{1^2}{2}=\frac{1}{2}\)
DẤU "=" XẢY RA <=> \(x=y\). MÀ \(x+y=1\)
=> A min \(=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\).
\(B=x^2-2x+1+x^2-6x+9\)
=> \(B=2x^2-8x+10\)
=> \(B=2\left(x^2-4x+4\right)+2\)
=> \(B=2\left(x-2\right)^2+2\)
CÓ: \(2\left(x-2\right)^2\ge0\forall x\Rightarrow2\left(x-2\right)^2+2\ge2\)
=> \(B\ge2\)
DẤU "=" XẢY RA <=> \(2\left(x-2\right)^2=0\Leftrightarrow x=2\)
VẬY B MIN = 2 <=> \(x=2\)
\(A=x^3+y^3+x^2+y^2=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]+\left(x+y\right)^2-2xy\)
\(A=2-5xy\ge2-\frac{5}{4}\left(x+y\right)^2=\frac{3}{4}\)
\(\Rightarrow A_{min}=\frac{3}{4}\) khi \(x=y=\frac{1}{2}\)
Ta có \(x,y>1\) và thoả mãn \(A=\frac{x^3+y^3-x^2-y^2}{\left(x-1\right)\left(y-1\right)}=\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^2}{y-1}+\frac{y^2}{x-1}.\)
Theo bất đẳng thức Cô-Si ta có \(\frac{x^2}{y-1}+4\left(y-1\right)\ge2\sqrt{\frac{x^2}{y-1}\cdot4\left(y-1\right)}=4x,\)
và \(\frac{y^2}{x-1}+4\left(x-1\right)\ge2\sqrt{\frac{y^2}{x-1}\cdot4\left(x-1\right)}=4y.\)
Cộng hai bất đẳng thức lại ta được \(\frac{x^2}{y-1}+\frac{y^2}{x-1}+4\left(x+y-2\right)\ge4\left(x+y\right)\to A\ge8.\) Dấu bằng xảy ra khi và chỉ khi \(x=2\left(y-1\right),y=2\left(x-1\right)\to x=y=2.\) Vậy giá trị bé nhất của biểu thức \(A\)là \(8.\)
Lời giải:
Áp dụng BĐT AM-GM:
$x^2+\frac{1}{2x}+\frac{1}{2x}\geq 3\sqrt[3]{\frac{1}{4}}$
Tương tự:
$y^2+\frac{1}{2y}+\frac{1}{2y}\geq 3\sqrt[3]{\frac{1}{4}}$
$z^2+\frac{1}{2z}+\frac{1}{2z}\geq 3\sqrt[3]{\frac{1}{4}}$
Cộng theo vế:
$A\geq 9\sqrt[3]{\frac{1}{4}}$ (đây chính là $A_{\min}$)
Dấu "=" xảy ra khi $x=y=z=\sqrt[3]{\frac{1}{2}}$
a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3
MInA=3<=>x=y=z=1
b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)