K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 7 2021

a.

\(\left\{{}\begin{matrix}x^2+y^2=\dfrac{1}{2}\\x^3+3xy^2=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y^2=\dfrac{1}{2}-x^2\\x^3+3xy^2=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow x^3+3x\left(\dfrac{1}{2}-x^2\right)=\dfrac{1}{2}\)

\(\Leftrightarrow4x^3-3x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x-1\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\)

- Với \(x=-1\) thế vào pt đầu: \(1+y^2=\dfrac{1}{2}\Rightarrow y^2=-\dfrac{1}{2}\) (vô nghiệm)

- Với \(x=\dfrac{1}{2}\) thế vào pt đầu: \(\dfrac{1}{4}+y^2=\dfrac{1}{2}\Rightarrow y=\pm\dfrac{1}{2}\)

27 tháng 7 2021

\(\left\{{}\begin{matrix}x^2+y^2=\dfrac{1}{2}\\x^3+3xy^2=\dfrac{1}{2}\end{matrix}\right.\)

Dễ thấy x = 0 không phải nghiệm ta nhân tử mẫu phương trình đầu cho 3x thì được

\(\Leftrightarrow\left\{{}\begin{matrix}3x^3+3xy^2=\dfrac{3x}{2}\left(1\right)\\x^3+3xy^2=\dfrac{1}{2}\left(2\right)\end{matrix}\right.\)

Lấy (1) - (2) thì đơn giản rồi ha

5 tháng 7 2021

1,\(VT=\dfrac{sin\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)}{cos\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)}+\dfrac{cos\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)}{sin\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)}\)\(=\dfrac{sin\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)^2+cos^2\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)}{cos\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right).sin\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)}\)

\(=\dfrac{1}{\dfrac{1}{2}.sin\left(\dfrac{\pi}{2}+x\right)}=\dfrac{2}{cosx}=VP\)

2,\(VT=\left(sin^4x-cos^4x\right)\left(sin^4x+cos^4x\right)=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]\)

\(=\left(sin^2-cos^2x\right)\left(1-2sin^2x.cos^2x\right)\)\(=-cos2x\left(1-\dfrac{1}{2}sin^22x\right)\)\(=-\dfrac{cos2x\left(2-sin^22x\right)}{2}=-\dfrac{cos2x\left(1+cos^22x\right)}{2}\)

\(VP=-\left(\dfrac{7}{8}cos2x+\dfrac{1}{8}cos6x\right)=-\dfrac{7}{8}cos2x-\dfrac{1}{8}\left[4cos^32x-3cos2x\right]=-\dfrac{7}{8}.cos2x-\dfrac{1}{2}cos^32x+\dfrac{3}{8}cos2x\)

\(=-\dfrac{1}{2}cos2x-\dfrac{1}{2}cos^32x=\dfrac{-cos2x\left(1+cos^22x\right)}{2}\)

\(\Rightarrow VT=VP\)(đpcm)

3, \(VT=3-4\left(1-2sin^2x\right)+1-2sin^22x=8sin^2x-2sin^22x=8sin^2x-8.sin^2x.cos^2x=8sin^2x\left(1-cos^2x\right)=8sin^4x=VP\)

4,\(VP=\dfrac{1}{2}\left[sin\left(x+\dfrac{\pi}{2}\right)+sin\left(3x+\dfrac{\pi}{6}\right)\right]-\dfrac{1}{2}\left[cos\left(3x-\dfrac{\pi}{3}\right)+cos\left(x+\pi\right)\right]\)

\(=\dfrac{1}{2}\left(cosx+sin3x.\dfrac{\sqrt{3}}{2}+\dfrac{cos3x}{2}\right)-\dfrac{1}{2}\left(\dfrac{cos3x}{2}+sin3x.\dfrac{\sqrt{3}}{2}-cosx\right)\)

\(=\dfrac{1}{2}.2cosx=cosx=VP\)

5, \(VP=4cos\left(2x-\dfrac{\pi}{6}\right).\left(sinx.\dfrac{\sqrt{3}}{2}+\dfrac{cosx}{2}\right)^2\)\(=cos\left(2x-\dfrac{\pi}{6}\right).\left(sinx.\sqrt{3}+cosx\right)^2\)

\(VT=2.cos\left(2x-\dfrac{\pi}{6}\right)+2.sin\left(2x-\dfrac{\pi}{6}\right).cos\left(2x-\dfrac{\pi}{6}\right)=2cos\left(2x-\dfrac{\pi}{6}\right)\left[1+sin\left(2x-\dfrac{\pi}{6}\right)\right]\)

\(=2cos\left(2x-\dfrac{\pi}{6}\right)\left(1+\dfrac{sin2x.\sqrt{3}}{2}-\dfrac{cos2x}{2}\right)\)\(=2cos\left(2x-\dfrac{\pi}{6}\right)\left(sin^2x+cos^2x+sinx.cosx.\sqrt{3}-\dfrac{cos^2x-sin^2x}{2}\right)\)

\(=2cos\left(2x-\dfrac{\pi}{6}\right)\left(sin^2x.\dfrac{3}{2}+sinx.cosx.\sqrt{3}+\dfrac{cos^2x}{2}\right)\)\(=cos\left(2x-\dfrac{\pi}{6}\right)\left(sin^2x.3+2sinx.cosx.\sqrt{3}+cos^2x\right)\)

\(=cos\left(2x-\dfrac{\pi}{6}\right)\left(sinx.\sqrt{3}+cosx\right)^2\)

\(\Rightarrow VT=VP\) (dpcm)

5 tháng 7 2021

làm mỏi tay khonng chị mà ít tick à =((

NV
2 tháng 3 2021

1. ĐKXĐ:...

\(8-2x-\dfrac{2}{x}-2\sqrt{2-x^2}-2\sqrt{2-\dfrac{1}{x^2}}=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(\dfrac{1}{x^2}-\dfrac{2}{x}+1\right)+\left(2-x^2-2\sqrt{2-x^2}+1\right)+\left(2-\dfrac{1}{x^2}-2\sqrt{2-\dfrac{1}{x^2}}+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(\dfrac{1}{x}-1\right)^2+\left(\sqrt{2-x^2}-1\right)^2+\left(\sqrt{2-\dfrac{1}{x^2}}-1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\dfrac{1}{x}-1=0\\\sqrt{2-x^2}-1=0\\\sqrt{2-\dfrac{1}{x^2}}-1=0\end{matrix}\right.\)

\(\Leftrightarrow x=1\)

NV
2 tháng 3 2021

2.

ĐKXĐ:...

Ta có:

\(VT=x\sqrt{x}+1.\sqrt{12-x}\le\sqrt{\left(x^2+1\right)\left(x+12-x\right)}=2\sqrt{3\left(x^2+1\right)}\)

Dấu "=" xảy ra khi và chỉ khi: \(x\sqrt{12-x}=\sqrt{x}\)

\(\Leftrightarrow x^3-12x^2+x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=6-\sqrt{35}\\x=6+\sqrt{35}\end{matrix}\right.\)

17 tháng 4 2021

1.

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y+x^3y+xy^2+xy=-\dfrac{5}{4}\\x^4+y^2+xy\left(1+2x\right)=-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+y\right)+xy+xy\left(x^2+y\right)=-\dfrac{5}{4}\\\left(x^2+y\right)^2+xy=-\dfrac{5}{4}\end{matrix}\right.\left(1\right)\)

Đặt \(\left\{{}\begin{matrix}x^2+y=a\\xy=b\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}a+b+ab=-\dfrac{5}{4}\\a^2+b=-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-a^2-\dfrac{5}{4}-a\left(a^2+\dfrac{5}{4}\right)=-\dfrac{5}{4}\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2-a^3-\dfrac{1}{4}a=0\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-a\left(a^2-a+\dfrac{1}{4}\right)=0\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a\left(a-\dfrac{1}{2}\right)^2=0\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=0\\b=-\dfrac{5}{4}\end{matrix}\right.\\\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}a=0\\b=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+y=0\\xy=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\sqrt[3]{10}}{2}\\y=-\dfrac{5}{2\sqrt[3]{10}}\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+y=\dfrac{1}{2}\\xy=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{3}{2}\end{matrix}\right.\)

Kết luận: Phương trình đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(\dfrac{\sqrt[3]{10}}{2};-\dfrac{5}{2\sqrt[3]{10}}\right);\left(1;-\dfrac{3}{2}\right)\right\}\)

NV
17 tháng 4 2021

2.

\(\left\{{}\begin{matrix}\left(x+1\right)^3-16\left(x+1\right)=\left(\dfrac{2}{y}\right)^3-4\left(\dfrac{2}{y}\right)\\1+\left(\dfrac{2}{y}\right)^2=5\left(x+1\right)^2+5\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+1=u\\\dfrac{2}{y}=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u^3-16u=v^3-4v\\v^2=5u^2+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u^3-v^3=16u-4v\\4=v^2-5u^2\end{matrix}\right.\)

\(\Rightarrow4\left(u^3-v^3\right)=\left(16u-4v\right)\left(v^2-5u^2\right)\)

\(\Leftrightarrow21u^3-5u^2v-4uv^2=0\)

\(\Leftrightarrow u\left(7u-4v\right)\left(3u+v\right)=0\Rightarrow\left[{}\begin{matrix}u=0\Rightarrow v^2=4\\u=\dfrac{4v}{7}\Rightarrow4=v^2-5\left(\dfrac{4v}{7}\right)^2\\v=-3u\Rightarrow4=\left(-3u\right)^2-5u^2\end{matrix}\right.\) 

\(\Rightarrow...\)

30 tháng 1 2021

1. 

ĐK: \(x\ne3;x\ne-2\)

\(\dfrac{5}{x-3}+\dfrac{3}{x+2}\le\dfrac{3+2x}{x^2-x-6}\)

\(\Leftrightarrow\dfrac{5\left(x+2\right)+3\left(x-3\right)}{x^2-x-6}\le\dfrac{3+2x}{x^2-x-6}\)

\(\Leftrightarrow\dfrac{8x+1-3-2x}{x^2-x-6}\le0\)

\(\Leftrightarrow\dfrac{6x-2}{x^2-x-6}\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}6x-2\ge0\\x^2-x-6< 0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}6x-2\le0\\x^2-x-6>0\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}6x-2\ge0\\x^2-x-6< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\-2< x< 3\end{matrix}\right.\Leftrightarrow\dfrac{1}{3}\le x< 3\)

TH2: \(\left\{{}\begin{matrix}6x-2\le0\\x^2-x-6>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\\left[{}\begin{matrix}x>3\\x< -2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow x< -2\)

Vậy ...

30 tháng 1 2021

2.

ĐK: \(x\ne\pm2\)

\(\dfrac{1}{x^2-4}+\dfrac{2}{x+2}>-\dfrac{3}{x-2}\)

\(\Leftrightarrow\dfrac{1}{x^2-4}+\dfrac{2\left(x-2\right)+3\left(x+2\right)}{x^2-4}>0\)

\(\Leftrightarrow\dfrac{5x+3}{x^2-4}>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}5x+3>0\\x^2-4>0\end{matrix}\right.\\\left\{{}\begin{matrix}5x+3< 0\\x^2-4< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{3}{5}< x< 2\\x< -2\end{matrix}\right.\)

Vậy ...

1 tháng 3 2022

tách nhỏ câu hỏi ra nhé dài quá

1 tháng 3 2022

ghê quá nguyễn ơi

a: \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=5\\\dfrac{1}{x}-\dfrac{4}{y}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=5\\\dfrac{2}{x}-\dfrac{8}{y}=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{11}{y}=11\\\dfrac{1}{x}-\dfrac{4}{y}=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\\dfrac{1}{x}=-3+\dfrac{4}{y}=-3+4=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{36}{x-3}-\dfrac{15}{y+2}=189\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{44}{x-3}=176\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=\dfrac{1}{4}\\\dfrac{15}{y+2}=-13-\dfrac{8}{x-3}=-13-32=-45\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{13}{4}\\y=-\dfrac{1}{3}-2=-\dfrac{7}{3}\end{matrix}\right.\)

2 tháng 2 2021

1.

\(x^4-6x^2-12x-8=0\)

\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)

\(\Leftrightarrow x=1\pm\sqrt{5}\)

2 tháng 2 2021

3.

ĐK: \(x\ge-9\)

\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)

\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)

Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)

\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)

\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)

\(\Leftrightarrow...\)