Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(y_1,y_2\) là hai nghiệm của PT \(y^2+3y+1=0\) nên theo hệ thức Vi-et ta có: \(\left\{{}\begin{matrix}y_1+y_2=-3\\y_1.y_2=1\end{matrix}\right.\).
Do \(x_1,x_2\) là hai nghiệm của PT \(x^2+px+q=0\) nên ta có \(\left\{{}\begin{matrix}x_1+x_2=-p\\x_1x_2=q\end{matrix}\right.\)
Lại có \(x_1=y_1^2+2y_2;x_2=y_2^2+2y_1\)
\(\Rightarrow\left\{{}\begin{matrix}-p=y_1^2+y_2^2+2\left(y_1+y_2\right)\\q=\left(y_1^2+2y_2\right)\left(y_2^2+2y_1\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-p=\left(y_1+y_2\right)^2-2y_1y_2+2\left(y_1+y_2\right)\\q=\left(y_1y_2\right)^2+4y_1y_2+2\left(y_1^3+y_2^3\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-p=\left(y_1+y_2\right)^2-2y_1y_2+2\left(y_1+y_2\right)\\q=\left(y_1y_2\right)^2+4y_1y_2+2\left[\left(y_1+y_2\right)\left(\left(y_1+y_2\right)^2-3y_1y_2\right)\right]\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-p=\left(-3\right)^2-2.1+2.\left(-3\right)=1\\q=1^2+4.1+2\left(\left(-3\right).\left(3^2-3.1\right)\right)=31\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}p=-1\\q=31\end{matrix}\right.\)
Áp dụng hệ thức Vi-ét ta có:
y1+y2= 3x1+3x2=3(x1+x2)
=\(\dfrac{-3b}{a}\)
y1y2=\(\dfrac{9c}{a}\)
Ta có pt x^2 +\(\dfrac{3b}{a}x+\dfrac{9c}{a}=0\)
a) tự làm
b) m=-2 (1) <=>2x^2 +6x-5 =0 (2) kq (a) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-\dfrac{6}{2}=-3\\x_1.x_2=-\dfrac{5}{2};=>\left(x_1;x_2\ne0\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}y_1=\dfrac{x_1}{x_2}\\y_2=\dfrac{x_2}{x_1}\end{matrix}\right.\) \(\Leftrightarrow\)\(\left\{{}\begin{matrix}y_1+y_2=\dfrac{x_1^2+x_2^2}{x_1.x_2}=\dfrac{\left(x_1+x_2\right)^2}{x_1.x_2}-2\\y_1.y_2=\dfrac{x_1.x_2}{x_2.x_1}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y_1+y_2=\dfrac{-28}{5}\\y_1.y_2=1\end{matrix}\right.\)
phương trình bậc hai cần tìm
\(5y^2-28y+5=0\)
Không bik là đơn giản như bạn nói thật không , nhưng mik chx học tới dạng này :v
a) Áp dụng đl Vi-ét vào pt ta có:
x1+x2=-1.5
x1 . x2= -13
C=x1(x2+1)+x2(x1+1)
= 2x1x2 + x1+x2
= 2.(-13) -1.5
= -26 -1.5
= -27.5
a, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-\frac{3}{2}\\x_1x_2=\frac{c}{a}=-13\end{cases}}\)
Ta có : \(C=x_1\left(x_2+1\right)+x_2\left(x_1+1\right)=x_1x_2+x_1+x_1x_2+x_2\)
\(=-13-\frac{3}{2}-13=-26-\frac{3}{2}=-\frac{55}{2}\)
Theo vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=2017^{2018}\\x_1.x_2=1\end{cases}}\)
Ta lại có:
\(y_1+y_2=x_1^2+1+x_2^2+1=\left(x_1+x_2\right)^2-2x_1.x_2+2=2017^{4036}\)
\(y_1.y_2=\left(x_1^2+1\right)\left(x_2^2+1\right)=x_1^2+x_2^2+1+x_1^2.x_2^2=\left(x_1+x_1\right)^2+\left(x_1.x_2\right)^2-2x_1.x_2+1=2017^{4036}\)
Vậy phương trình mới là:
\(Y^2-2017^{4036}Y+2017^{4036}=0\)
Đề đúng không em nhỉ? \(x_2=y_2^2+y_1\) hay \(x_2=y_2^2+2y_1\)?