\(x^2+x-1=0.\)có 2 No là \(x_1\)và 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2020

Không bik là đơn giản như bạn nói thật không , nhưng mik chx học tới dạng này :v

19 tháng 8 2020

Không đơn giản thì nói làm gì.

11 tháng 6 2019

Một cửa hàng ngày thứ nhất bán 180 tạ gạo, ngày thứ hai bán 270 tạ gạo , ngày thứ ba bán kém hơn ngày thứ hai một nửa .Hỏi trung bình mỗi ngày cửa hàng bán được bao nhiêu tạ gạo ?

11 tháng 6 2019

1) Xét hiệu :

\(\left(x_1+x_2+x_3\right)\left(y_1+y_2+y_3\right)-3\left(x_1y_1+x_2y_2+x_3y_3\right).\)

\(=x_1\left(y_1+y_2+y_3\right)-3x_1y_1+x_2\left(y_1+y_2+y_3\right)-3x_2y_2+x_3\left(y_1+y_2+y_3\right)-3x_3y_3.\)

\(=x_1\left(y_2+y_3-2y_1\right)+x_2\left(y_1+y_3-2y_2\right)+x_3\left(y_1+y_2-2y_3\right)\)

\(=x_1\left[\left(y_2-y_1\right)-\left(y_1-y_3\right)\right]+x_2\left[\left(y_3-y_2\right)-\left(y_2-y_1\right)\right]+x_3\left[\left(y_1-y_3\right)-\left(y_3-y_2\right)\right]\)

\(=\left(y_2-y_1\right)\left(x_1-x_2\right)+\left(y_1-y_3\right)\left(x_3-x_1\right)+\left(y_3-y_2\right)\left(x_2-x_3\right)\le0\)

Vì \(x_1\le x_2\le x_3;y_1\le y_2\le y_3\)

26 tháng 5 2021

a) Áp dụng đl Vi-ét vào pt ta có:

x1+x2=-1.5

x1 . x2= -13

C=x1(x2+1)+x2(x1+1)

 = 2x1x2 + x1+x2

= 2.(-13) -1.5

= -26 -1.5

= -27.5

26 tháng 5 2021

a, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-\frac{3}{2}\\x_1x_2=\frac{c}{a}=-13\end{cases}}\)

Ta có : \(C=x_1\left(x_2+1\right)+x_2\left(x_1+1\right)=x_1x_2+x_1+x_1x_2+x_2\)

\(=-13-\frac{3}{2}-13=-26-\frac{3}{2}=-\frac{55}{2}\)

10 tháng 10 2019

chắc 2 bạn là một: https://olm.vn/thanhvien/perfectonedirection

11 tháng 10 2019

\(\frac{y-y_1}{y_2-y_1}=\frac{ax+b-ax_1-b}{ax_2+b-ax_1-b}=\frac{a\left(x-x_1\right)}{a\left(x_2-x_1\right)}=\frac{x-x_1}{x_2-x_1}\)

2 tháng 7 2018

Theo vi-et ta có: 

\(\hept{\begin{cases}x_1+x_2=2017^{2018}\\x_1.x_2=1\end{cases}}\)

Ta lại có:

\(y_1+y_2=x_1^2+1+x_2^2+1=\left(x_1+x_2\right)^2-2x_1.x_2+2=2017^{4036}\)

\(y_1.y_2=\left(x_1^2+1\right)\left(x_2^2+1\right)=x_1^2+x_2^2+1+x_1^2.x_2^2=\left(x_1+x_1\right)^2+\left(x_1.x_2\right)^2-2x_1.x_2+1=2017^{4036}\)

Vậy phương trình mới là:

\(Y^2-2017^{4036}Y+2017^{4036}=0\)

27 tháng 6 2019

Gọi ptđt (d) có dạng: y= kx+b

Vì M(1;12)\(\in\) (d)

Thay xM= 1; yM= 12 vào (d)

\(k+b=12\Rightarrow b=12-k\)

Xét PTHĐGĐ của (d) và (P)

\(\frac{x^2}{3}=kx+b\Leftrightarrow x^2-3kx-3b=0\)

\(\Delta=9k^2+12b=9k^2-12k+144>0\forall x\)

\(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt

Theo Vi-ét:

\(\left\{{}\begin{matrix}x_1+x_2=3k\\x_1x_2=-3b=-3\left(12-k\right)=3k-36\end{matrix}\right.\)

\(\frac{y_2}{x_1}+\frac{y_1}{x_2}=\frac{\left(kx_2+b\right)x_2+\left(kx_1+b\right)x_1}{x_1x_2}=\frac{k\left(x_1+x_2\right)^2-2kx_1x_2+b\left(x_1+x_2\right)}{x_1x_2}\)

Đến đây gần xong rùi, bạn thay hệ thức Vi-ét vào rùi giải là OK

NV
9 tháng 3 2020

\(x^3y^2-x^2y^2-2x^2y+2xy+3x-3=0\)

\(\Leftrightarrow x^2y^2\left(x-1\right)-2xy\left(x-1\right)+3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2y^2-2xy+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(xy-1\right)^2+2=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow y^2-y-3m+1=0\) (1)

\(\Delta=1-4\left(-3m+1\right)=12m-3>0\Rightarrow m>\frac{1}{4}\)

Gọi \(y_1;y_2\) là 2 nghiệm của (1) \(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=1\\y_1y_2=-3m+1\end{matrix}\right.\)

\(\left(1+y_2\right)\left(1+y_1\right)+3=0\)

\(\Leftrightarrow y_1y_2+y_1+y_2+4=0\)

\(\Leftrightarrow-3m+1+5=0\) \(\Rightarrow m=2\)

9 tháng 3 2020

Cám ơn nha