Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\text{Δ}=\left(m-1\right)^2-4\cdot1\cdot\left(-m\right)=\left(m+1\right)^2>=0\)
=>(5) luôn có nghiệm
b: \(x_1^2+x_2^2-2x_1x_2-\left(x_1\cdot x_2\right)^2=2m+1\)
=>\(\left(x_1+x_2\right)^2-4x_1x_2-\left(x_1\cdot x_2\right)^2=2m+1\)
=>\(\left(m-1\right)^2-4\cdot\left(-m\right)-\left(-m\right)^2=2m+1\)
=>\(m^2-2m+1+4m-m^2=2m+1\)
=>2m+1=2m+1(luôn đúng)
\(\Delta=\frac{1}{4}-4m^2\ge0\Rightarrow x^2\le\frac{1}{16}\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\frac{1}{2}\\x_1x_2=m^2\end{matrix}\right.\)
\(P=x_1^3+x_1+x_2^3+x_2=\left(x_1^3+x_2^3\right)+x_1+x_2\)
\(P=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+x_1+x_2\)
\(P=-\frac{1}{8}+\frac{3}{2}m^2-\frac{1}{2}=\frac{3}{2}m^2-\frac{5}{8}\le\frac{3}{2}.\frac{1}{16}-\frac{5}{8}=-\frac{17}{32}\)
\(P_{max}=-\frac{17}{32}\) khi \(m=\pm\frac{1}{4}\)
dcv_new
dcv - new
Thay m = - 1 vào thì ta có: \(x^2-x-6=0\)
<=> x = 3 hoặc x = -2
Vậy m = -1 và x2 = - 2
a, Thay \(x_1=3\)vào phương trình , khi đó :
\(pt< =>\)\(3^2+3m+2m-4=0\)
\(< =>5m+5=0\)
\(< =>m=-\frac{5}{5}=-1\)
Thay \(m=-1\)vào phương trình , khi đó :
\(pt< =>x^2-x+2=0\)
\(< =>x=\varnothing\left(vo-nghiem\right)\)(giải delta)
Vậy phương trình chỉ có nghiệm kép khi \(m=-1\)
b, Theo hệ thức vi ét ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-m\\x_1x_2=\frac{c}{a}=2m-4\end{cases}}\)
Khi đó \(A=\frac{2m-4+3}{-m}=\frac{2m-1}{-m}\)
Bạn thiếu đề rồi thì phải !
\(\Delta'=\left(-\sqrt{5}\right)^2-1.2=5-2=3>0\)
Suy ra pt luôn có 2 nghiệm phân biệt
Áp dụng định lý Vi-ét ta có:\(\left\{{}\begin{matrix}x_1+x_2=2\sqrt{5}\\x_1x_2=2\end{matrix}\right.\)
\(E=\dfrac{x^2_1+x_1x_2+x^2_2}{x^2_1+x^2_2}\\
=\dfrac{\left(x_1+x_2\right)^2-x_1x_2}{\left(x_1+x_2\right)^2-2x_1x_2}\\
=\dfrac{\left(2\sqrt{5}\right)^2-2}{\left(2\sqrt{5}\right)^2-2.2}\\
=\dfrac{20-2}{20-4}\\
=\dfrac{18}{16}\\
=\dfrac{9}{8}\)
\(E=\dfrac{\left(x_1+x_2\right)^2-x_1x_2}{\left(x_1+x_2\right)^2-2x_1x_2}=\dfrac{4.5-2}{4.5-2.2}=\dfrac{18}{16}=\dfrac{9}{8}\)