K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2022

Nhớ bổ đề này: \(\int\limits^b_af\left(x\right)dx=\int\limits^b_af\left(a+b-x\right)dx\) . Chứng minh thì đơn giản th nên bạn tự chứng minh

\(S_2=\int\limits^2_{-1}f\left(x\right)dx\)

\(S_1=\int\limits^2_{-1}xf\left(x\right)dx=\int\limits^2_{-1}\left(1-x\right)f\left(1-x\right)dx=\int\limits^2_{-1}f\left(x\right)dx-\int\limits^2_{-1}xf\left(x\right)dx\)

\(\Leftrightarrow2\int\limits^2_{-1}xf\left(x\right)dx=\int\limits^2_{-1}f\left(x\right)dx\Leftrightarrow2S_1=S_2\)

12 tháng 4 2022

mình vẫn không hiểu vì sao lại ra được dòng cuối ạ, mình cảm ơn nhiều

23 tháng 2 2017

Mình giải giúp b câu 1 này

Ở phần mẫu bạn biến đổi \(cos^2xsin^2x=\frac{1}{4}\left(4cos^2xsin^2x\right)=\frac{1}{4}sin^22x\)

Đặt t = sin2x => \(d\left(t\right)=2cos2xdx\)

Đổi cận \(x=\frac{\pi}{4}=>t=1\) \(x=\frac{\pi}{3}=>t=\frac{\sqrt{3}}{2}\)

Ta có biểu thức trên sau khi đổi biến và cận

\(\int\limits^{\frac{\sqrt{3}}{2}}_1\frac{\frac{1}{2}dt}{\frac{1}{4}t^2}=\int\limits^{\frac{\sqrt{3}}{2}}_1\frac{2}{t^2}dt=\left(-\frac{2}{t}\right)\)lấy cận từ 1 đến \(\frac{\sqrt{3}}{2}\) \(=-\frac{2}{\frac{\sqrt{3}}{2}}-\left(-\frac{2}{1}\right)=2-4\frac{\sqrt{3}}{3}\) => a=2 và b=-4/3 vậy A=2/3 nhé

AH
Akai Haruma
Giáo viên
26 tháng 2 2017

Câu 1)

Ta có:

\(I=\int ^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{\cos 2x}{\cos^2 x\sin^2 x}dx=\int ^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{\cos^2x-\sin ^2x}{\cos^2 x\sin^2 x}dx\)

\(=\int ^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{dx}{\sin^2 x}-\int ^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{dx}{\cos ^2x}=-\int ^{\frac{\pi}{3}}_{\frac{\pi}{4}}d(\cot x)-\int ^{\frac{\pi}{3}}_{\frac{\pi}{4}}d(\tan x)\)

\(=-\left ( \frac{\sqrt{3}}{3}-1 \right )-(\sqrt{3}-1)=2-\frac{4}{3}\sqrt{3}\Rightarrow a+b=\frac{2}{3}\)

26 tháng 4 2017

Giải bài 8 trang 40 sgk Hình học 12 | Để học tốt Toán 12

Giải bài 8 trang 40 sgk Hình học 12 | Để học tốt Toán 12

Giải bài 8 trang 40 sgk Hình học 12 | Để học tốt Toán 12

27 tháng 4 2017

Hỏi đáp Toán

20 tháng 2 2021

Câu nào mình biết thì mình làm nha.

1) Đổi thành \(\dfrac{y^4}{4}+y^3-2y\) rồi thế số.KQ là \(\dfrac{-3}{4}\)

2) Biến đổi thành \(\dfrac{t^2}{2}+2\sqrt{t}+\dfrac{1}{t}\) và thế số.KQ là \(\dfrac{35}{4}\)

3) Biến đổi thành 2sinx + cos(2x)/2 và thế số.KQ là 1

 

NV
6 tháng 2 2020

\(f\left(x\right)=cosx\Rightarrow f\left(f\left(\frac{\pi}{2}\right).\pi\right)=cos0=1\)

1 tháng 4 2017

a)

Ta có:

∫π20cos2xsin2xdx=12∫π20cos2x(1−cos2x)dx=12∫π20[cos2x−1+cos4x2]dx=14∫π20(2cos2x−cos4x−1)dx=14[sin2x−sin4x4−x]π20=−14.π2=−π8∫0π2cos⁡2xsin2xdx=12∫0π2cos⁡2x(1−cos⁡2x)dx=12∫0π2[cos⁡2x−1+cos⁡4x2]dx=14∫0π2(2cos⁡2x−cos⁡4x−1)dx=14[sin⁡2x−sin⁡4x4−x]0π2=−14.π2=−π8

b)

Ta có: Xét 2x – 2-x ≥ 0 ⇔ x ≥ 0.

Ta tách thành tổng của hai tích phân:

∫1−1|2x−2−x|dx=−∫0−1(2x−2−x)dx+∫10(2x−2−x)dx=−(2xln2+2−xln2)∣∣0−1+(2xln2+2−xln2)∣∣10=1ln2∫−11|2x−2−x|dx=−∫−10(2x−2−x)dx+∫01(2x−2−x)dx=−(2xln⁡2+2−xln⁡2)|−10+(2xln⁡2+2−xln⁡2)|01=1ln⁡2

c)

∫21(x+1)(x+2)(x+3)x2dx=∫21x3+6x2+11x+6x2dx=∫21(x+6+11x+6x2)dx=[x22+6x+11ln|x|−6x]∣∣21=(2+12+11ln2−3)−(12+6−6)=212+11ln2∫12(x+1)(x+2)(x+3)x2dx=∫12x3+6x2+11x+6x2dx=∫12(x+6+11x+6x2)dx=[x22+6x+11ln⁡|x|−6x]|12=(2+12+11ln⁡2−3)−(12+6−6)=212+11ln⁡2

d)

∫201x2−2x−3dx=∫201(x+1)(x−3)dx=14∫20(1x−3−1x+1)dx=14[ln|x−3|−ln|x+1|]∣∣20=14[1−ln2−ln3]=14(1−ln6)∫021x2−2x−3dx=∫021(x+1)(x−3)dx=14∫02(1x−3−1x+1)dx=14[ln⁡|x−3|−ln⁡|x+1|]|02=14[1−ln⁡2−ln⁡3]=14(1−ln⁡6)

e)

∫π20(sinx+cosx)2dx=∫π20(1+sin2x)dx=[x−cos2x2]∣∣π20=π2+1∫0π2(sinx+cosx)2dx=∫0π2(1+sin⁡2x)dx=[x−cos⁡2x2]|0π2=π2+1

g)

I=∫π0(x+sinx)2dx∫π0(x2+2xsinx+sin2x)dx=[x33]∣∣π0+2∫π0xsinxdx+12∫π0(1−cos2x)dxI=∫0π(x+sinx)2dx∫0π(x2+2xsin⁡x+sin2x)dx=[x33]|0π+2∫0πxsin⁡xdx+12∫0π(1−cos⁡2x)dx

Tính :J=∫π0xsinxdxJ=∫0πxsin⁡xdx

Đặt u = x ⇒ u’ = 1 và v’ = sinx ⇒ v = -cos x

Suy ra:

J=[−xcosx]∣∣π0+∫π0cosxdx=π+[sinx]∣∣π0=πJ=[−xcosx]|0π+∫0πcosxdx=π+[sinx]|0π=π

Do đó:

I=π33+2π+12[x−sin2x2]∣∣π30=π33+2π+π2=2π3+15π6

Câu 1: Gọi nguyên hàm của hàm số \(\int\frac{sin\left(x\right)}{sin\left(x\right)+cos\left(x\right)}dx\) có dạng \(ax+bln\left|sin\left(x\right)+cos\left(x\right)\right|+C\) (a,b là các số hữu tỉ) và nguyên hàm của hàm số \(\int cos^2\left(x\right)dx\) có dạng \(cx+\frac{1}{2d}sin\left(dx\right)+C\) ( c,d là các số hữu tỉ) . Khi này tính \(I=2a-2b+2c+d\) bằng a) 4 b) 5 c) \(\frac{3}{2}\) d) \(\frac{25}{4}\) Câu 2. Cho hàm số...
Đọc tiếp

Câu 1: Gọi nguyên hàm của hàm số \(\int\frac{sin\left(x\right)}{sin\left(x\right)+cos\left(x\right)}dx\) có dạng \(ax+bln\left|sin\left(x\right)+cos\left(x\right)\right|+C\) (a,b là các số hữu tỉ) và nguyên hàm của hàm số \(\int cos^2\left(x\right)dx\) có dạng \(cx+\frac{1}{2d}sin\left(dx\right)+C\) ( c,d là các số hữu tỉ) . Khi này tính \(I=2a-2b+2c+d\) bằng

a) 4

b) 5

c) \(\frac{3}{2}\)

d) \(\frac{25}{4}\)

Câu 2. Cho hàm số \(f\left(x\right)=sin\left(ln\left(x\right)\right)\)\(g\left(x\right)=cos\left(ln\left(x\right)\right)\)

a) Tích nguyên hàm của \(\int\left[f\left(x\right)-g\left(x\right)\right]dx\)

b) Biết \(\int\limits^{e^{\pi}}_1f\left(x\right)dx=\frac{1}{a}\left(e^b+c\right)\) . Tính \(\left(a-c\right)^2\cdot b\)

Câu 3: Cho hàm số \(f\left(x\right)\) có đạo hàm liên tục trên đoạn \(\left[0;1\right]\) thoả mản điều kiện \(f\left(2020x+2019\right)=2020f\left(x\right),\forall x\in R.\) Tính tích phân \(\int\limits^1_03\left[f\left(x\right)\right]^2dx\) bằng

a) \(\frac{7}{3}\left[f\left(1\right)\right]^2\)

b) \(\frac{3}{7}\left(f\left(1\right)\right)^2\)

c) \(7\left[f\left(-1\right)\right]^2\)

d\(\frac{3}{7}\left[f\left(-1\right)\right]^2\)

2
NV
9 tháng 2 2020

Câu 1:

\(\int\frac{sinx}{sinx+cosx}dx=\frac{1}{2}\int\frac{sinx+cosx+sinx-cosx}{sinx+cosx}dx=\frac{1}{2}\int dx-\frac{1}{2}\int\frac{cosx-sinx}{sinx+cosx}dx\)

\(=\frac{1}{2}x-\frac{1}{2}\int\frac{d\left(sinx+cosx\right)}{sinx+cosx}=\frac{1}{2}x-\frac{1}{2}ln\left|sinx+cosx\right|+C\)

\(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=-\frac{1}{2}\end{matrix}\right.\)

\(\int cos^2xdx=\int\left(\frac{1}{2}+\frac{1}{2}cos2x\right)dx=\frac{1}{2}x+\frac{1}{4}sin2x+C\)

\(\Rightarrow\left\{{}\begin{matrix}c=\frac{1}{2}\\d=2\end{matrix}\right.\) \(\Rightarrow I=5\)

NV
9 tháng 2 2020

Câu 2:

\(I=\int\left(sin\left(lnx\right)-cos\left(lnx\right)\right)dx=\int sin\left(lnx\right)dx-\int cos\left(lnx\right)dx=I_1-I_2\)

Xét \(I_2=\int cos\left(lnx\right)dx\)

Đặt \(\left\{{}\begin{matrix}u=cos\left(lnx\right)\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=-\frac{1}{x}sin\left(lnx\right)dx\\v=x\end{matrix}\right.\)

\(\Rightarrow I_2=x.cos\left(lnx\right)+\int sin\left(lnx\right)dx=x.cos\left(lnx\right)+I_1\)

\(\Rightarrow I=I_1-\left(x.cos\left(lnx\right)+I_1\right)=-x.cos\left(lnx\right)+C\)

b/ \(I=\int\limits sin\left(lnx\right)dx\)

Đặt \(\left\{{}\begin{matrix}u=sin\left(lnx\right)\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{1}{x}cos\left(lnx\right)dx\\v=x\end{matrix}\right.\)

\(\Rightarrow I=x.sin\left(lnx\right)-\int cos\left(lnx\right)dx\)

Đặt \(\left\{{}\begin{matrix}u=cos\left(lnx\right)\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=-\frac{1}{x}sin\left(lnx\right)dx\\v=x\end{matrix}\right.\)

\(\Rightarrow I=x\left[sin\left(lnx\right)-cos\left(lnx\right)\right]-I\)

\(\Rightarrow I=\frac{1}{2}x\left[sin\left(lnx\right)-cos\left(lnx\right)\right]|^{e^{\pi}}_1=\frac{1}{2}\left(e^{\pi}+1\right)\)

\(\Rightarrow a=2;b=\pi;c=1\)