K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 9 2021

Bằng \(\overrightarrow{AB}\) là \(\overrightarrow{DC}\)

Bằng \(\overrightarrow{OB}\) là \(\overrightarrow{DO}\)

Có độ dài bằng OB là \(\overrightarrow{OB};\overrightarrow{BO};\overrightarrow{OD};\overrightarrow{DO}\)

12 tháng 9 2021

a) Bằng vectơ AB :
\(\overrightarrow{DC}\)
Bằng vectơ OB :
\(\overrightarrow{DO}\)
b)Có độ dài bằng OB :
\(\overrightarrow{OD}, \overrightarrow{DO}, \overrightarrow{BO}\)
 

25 tháng 3 2022

undefinedđúng ko v ???????

25 tháng 3 2022

25 tháng 3 2022

đúng ko ạ

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

A. \({a^2} = {b^2} + {c^2} + \sqrt 2 ab.\) (Loại)

Vì: Theo định lí cos ta có: \({a^2} = {b^2} + {c^2} - 2bc.\cos A\)

Không đủ dữ kiện để suy ra \({a^2} = {b^2} + {c^2} + \sqrt 2 ab.\)

B. \(\frac{b}{{\sin A}} = \frac{a}{{\sin B}}\) (Loại)

Theo định lí sin, ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} \nRightarrow \frac{b}{{\sin A}} = \frac{a}{{\sin B}}\)

C. \(\sin B = \frac{{ - \sqrt 2 }}{2}\)(sai vì theo câu a, \(\sin B = \frac{{\sqrt 2 }}{2}\))

D. \({b^2} = {c^2} + {a^2} - 2ca\cos {135^o}.\)

Theo định lý cos ta có:

\({b^2} = {c^2} + {a^2} - 2ca.\cos B\) (*)

Mà \(\widehat B = {135^o} \Rightarrow \cos B = \cos {135^o}\).

Thay vào (*) ta được: \({b^2} = {c^2} + {a^2} - 2ca\;\cos {135^o}\)

=> D đúng.

Chọn D

2 tháng 5 2023

1. Kẻ đường kính chứa 1 trong 3 điểm A,B,C  bất kỳ của (O) 

Tam giác ABC chứa tâm O <=>

 (*) Có nhiều nhất 2 điểm nằm 

trên nửa đường tròn (O) có đường kính như trên , không nhận

cạnh nào là đường kính

(*) ABC là tam giác vuông

Nhận thấy khi tam giác ABC nội tiếp (O) thì A,B,C có 3 trường hợp:

TH1 : 3 điểm cùng nằm trên nửa (O ; DE/2) , không có cạnh nào là đường kính

TH2 : 2 điểm nằm trên nửa (O ; DE/2) ; 1 điểm trên nửa (O) còn lại 

TH3 : Tam giác vuông 

Biến cố A : " Tam giác ABC chứa tâm O"

=> P(A) = \(\dfrac{2}{3}\)

7 tháng 11 2019

Đáp án B

24 tháng 3 2022

dddddddddddd

24 tháng 3 2022

Tham khảo ạ !!!!

vì các góc ACD và ABD đều nhìn đoạn AD dưới 1 góc vuông

suy ra góc ACD = ABD = 90

vì H là trực tâm tam giác

suy ra BH vuông góc với AC

và CH vuông góc với AB

vì BH vuông góc với AC

mà CD vuông góc với AC

suy ra BH//CD

tương tự, ta được BD//HC

suy ra tứ giác BHCD là hình bình hành

suy ra BH = CD

mà BH//CD(cmt)

suy ra vecto BH = DC

1: A(2;0); B(-3;4); C(1;-5)

Tọa độ vecto AB là:

\(\left\{{}\begin{matrix}x=-3-2=-5\\y=4-0=4\end{matrix}\right.\)

=>\(\overrightarrow{AB}=\left(-5;4\right)\)

Tọa độ vecto AC là:

\(\left\{{}\begin{matrix}x=1-2=-1\\y=-5-0=-5\end{matrix}\right.\)

Vậy: \(\overrightarrow{AC}=\left(-1;-5\right)\)

\(\overrightarrow{AB}=\left(-5;4\right)\)

Vì \(\left(-1\right)\cdot\left(-5\right)=5< >-20=-5\cdot4\)

nên A,B,C không thẳng hàng

=>A,B,C là ba đỉnh của một tam giác

2: Tọa độ trọng tâm G của ΔABC là:

\(\left\{{}\begin{matrix}x=\dfrac{2-3+1}{3}=\dfrac{0}{3}=0\\y=\dfrac{0+4-5}{3}=-\dfrac{1}{3}\end{matrix}\right.\)

3:

\(\overrightarrow{AB}=\left(-5;4\right);\overrightarrow{DC}=\left(1-x;-5-y\right)\)

ABCD là hình bình hành

nên \(\overrightarrow{AB}=\overrightarrow{DC}\)

=>\(\left\{{}\begin{matrix}1-x=-5\\-5-y=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=1+5=6\\y=-5-4=-9\end{matrix}\right.\)

Vậy: D(6;-9)

4: \(\overrightarrow{MA}=\left(2-x;-y\right);\overrightarrow{MB}=\left(-3-x;4-y\right);\overrightarrow{MC}=\left(1-x;-5-y\right)\)

\(2\overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC}=\overrightarrow{0}\)

=>\(\left\{{}\begin{matrix}2\left(2-x\right)+\left(-3-x\right)+3\left(1-x\right)=0\\2\left(-y\right)+\left(4-y\right)+3\left(-5-y\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4-2x-3-x+3-3x=0\\-2y+4-y-15-3y=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-6x+4=0\\-6y-11=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-6x=-4\\-6y=11\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-\dfrac{11}{6}\end{matrix}\right.\)

vậy: \(M\left(\dfrac{2}{3};-\dfrac{11}{6}\right)\)

5:

A(2;0); B(-3;4); C(1;-5); N(x;y)

A là trọng tâm của ΔBNC

=>\(\left\{{}\begin{matrix}x_A=\dfrac{x_B+x_N+x_C}{3}\\y_A=\dfrac{y_B+y_N+y_C}{3}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2=\dfrac{-3+1+x}{3}\\0=\dfrac{4-5+y}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2=6\\y-1=0\end{matrix}\right.\)

=>x=8 và y=1

Vậy: N(8;1)

6: A là trung điểm của BE

=>\(\left\{{}\begin{matrix}x_B+x_E=2\cdot x_A\\y_B+y_E=2\cdot y_A\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-3+x_E=2\cdot2=4\\4+y_E=2\cdot0=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_E=7\\y_E=-4\end{matrix}\right.\)

Vậy: E(7;-4)