Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số phức z = x + y i x , y ∈ ℝ có tập hợp điểm biểu diễn trên mặt phẳng tọa độ là đường tròn có phương trình
( C ) : x - 1 2 + y - 2 2 = 4 ⇒ - 1 ≤ x ≤ 3
w = z + z ¯ + 2 i = x + y i + x - y i + 2 i = 2 x + 2 i
Tọa độ điểm biểu diễn số phức w là M ( x ; 2 ) , x ∈ - 1 ; 3
Vậy, tập hợp các điểm biểu diễn của số phức là w là đoạn thẳng AB với A(-1;2),B(3;2)
Chọn đáp án B.
Đáp án B
Số phức liên hợp z ¯ = x − y i . Vậy điểm M′ biểu diễn z ¯ có được bằng cách lấy đối xứng z qua trục hoành.
Đáp án B
Mà M thuộc đường thẳng d: y = 3x , nên tọa độ của P thỏa mãn
Vậy tập hợp các điểm P là đường thẳng y = − 3 4 x , x ≤ 0