Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Đặt t = sin x , t ∈ − 1 ; 1 . Phương trình đã cho trở thành 2 t + 1 t + 2 = m (*).
Để phương trình đã cho có đúng hai nghiệm thuộc đoạn 0 ; π thì phương trình (*) phải có đúng một nghiệm thuộc nửa khoảng 0 ; 1 .
Xét hàm số f t = 2 t + 1 t + 2 . Ta có f ' t = 3 t + 2 2 .
Bảng biến thiên của :
Vậy để phương trình (*) có đúng một nghiệm thuộc nửa khoảng 0 ; 1 thì m ∈ 1 2 ; 1 . Vậy C là đáp án đúng
Đặt t = sin x ∈ ( 0 ; 1 ] , ∀ x ∈ ( 0 ; π ) Phương trình trở thành: f(t)=m(1)
Ta cần tìm m để (1) có nghiệm thuộc khoảng ( 0 ; 1 ] ⇔ - 4 ≤ m < - 2
Chọn đáp án C.
Đặt t = sinx do
● Gọi ∆ 1 là đường thẳng qua điểm (1;-1) và song song với đường thẳng y = 3x nên có phương trình y = 3x - 4
● Gọi ∆ 2 là đường thẳng qua điểm (0;1) và song song với đường thẳng y = 3x nên có phương trình y = 3x+1
Do đó phương trình f sin x = 3 sin x + m có nghiệm thuộc khoảng 0 ; π khi và chỉ khi phương trình f(t) = 3t + m có nghiệm thuộc nửa khoảng Chọn A.
Đáp án B
sin 2 x + 2 sin x + π 4 − 2 = m ( * ) ⇔ 2 sin x + π 4 2 2 sin x + π 4 = m + 3
Đặt t = 2 sin x + π 4 . Vì x ∈ 0 ; 3 π 4 nên t ∈ 0 ; 2 .
Khi đó phương trình (*) trở thành:
t 2 + t − m − 3 = 0 ( 1 )
Để phương trình (*) có đúng hai nghiệm thuộc khoảng 0 ; 3 π 4 phương trình (1) có đúng một nghiệm thuộc khoảng 0 ; 2
TH1
Δ = 0 0 < − b 2 a < 2 ⇔ 4 m + 4 = 0 0 < − 1 2 < 2 ( V L )
TH2
Δ > 0 f ( 0 ) f ( 2 ) < 0 ⇔ 4 m + 4 > 0 − m − 3 2 − 1 − m < 0 ⇔ m ∈ − 1 ; 2 − 1