Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. vì tan giác ABC vuông tại A nên:
Áp dụng định lý Pytago ta có:
BC2 = AB2 + AC2
BC = 6+8
BC2 = 362 + 642
BC = \(\sqrt{100}\)
BC = 10 (cm)
Vậy BC= 10cm
b. Xét 2 tam giác vuông AFD và tam giác vuông ECD, ta có:
A=E= 900
D1 = D2 ( hai góc đối đỉnh)
=> tam giác AFD= tam giác ECD
=> DF=DC( hai cạnh tương ứng)
ko bt đúng hay sai, làm bừa. nếu sai thì tự sửa lại nha
a.vì tam giác ABC vuông tại A
áp dụng định lí py-ta-go,ta có
BC^2=AB^2+AC^2
BC^2=6^2+8^2
BC^2=100
BC=10
b.xét tam giác EDB và tam giác ADB,có
DEB=DAB(=90*)
EBD=ABD
DB chung
suy ra:tam giác EDB=tam giácADB
suy ra ,ED=AD
xét tam giác CED và tam giác FAD,có
CED=FAD
CDE=FDA
DE=DA
suy ra tam giác CED=tam giácFAD
suy ra DF=DC
c.tam giác CFB có
CA là đường cao
FE là đường cao
mà CA cắt FE tại D
SUY RA :D là trực tâm
Lời giải:
Gọi $M, N,P$ lần lượt là chân đường cao kẻ từ $A,B,C$ của tam giác ABC. $AM, BN, CP$ cắt nhau tại trực tâm $H$ của tam giác $ABC$.
Xét tam giác ABH: $AN\perp BH, BM\perp AH$. Mà $AM, BM$ cắt nhau tại $C$ nên $C$ là trực tâm của tam giác $ABH$
Tương tự: $B$ là trực tâm tam giác $ACH$, $A$ là trực tâm tam giác $BHC$
Hình vẽ: