Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
F ( x ) = ∫ 1 1 - 3 x + 1 d x = - 1 3 ∫ d ( 1 - 3 x ) 1 - 3 x + x = x - 2 3 1 - 3 x + C
F ( - 1 ) = 2 3 ⇒ C = 3 ⇒ F ( x ) = x - 2 3 1 - 3 x + 3
Đáp án A
Phương pháp:
Dựa vào khái niệm cực trị và các kiến thức liên quan.
Cách giải:
(1) chỉ là điều kiện cần mà không là điều kiện đủ.
VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.
(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.
(3) hiển nhiên sai.
Vậy (1), (2), (3): sai; (4): đúng
Chọn A.
Đặt u=x, d v = 1 cos 2 x d x ta được du = dx, v = tanx
Do đó
F ( x ) = ∫ x cos 2 x d x = x tan x - ∫ tan x d x = x tan x + ln cos x + C
Vì F π = 2017 nên C = 2017. Vậy F(x) = xtanx + ln|cosx| + 2017.
Giả sử hàm số f(x) là hàm số chẵn trên đoạn [-a; a], ta có:
Đổi biến x = - t đối với tích phân
Ta được:
Vậy
Trường hợp sau chứng minh tương tự. Áp dụng:
Vì
là hàm số lẻ trên đoạn [-2; 2] nên
Chọn A.
∫ x cos x d x = x sin x + cos x + C
F(0) = 1 nên C = 0. Khi đó F(x) = x.sinx + cosx
Do đó g(x) = x.sinx là hàm số chẵn; h(x)=cos x là hàm số chẵn nên F(x)= g(x) + h(x) là hàm số chẵn.