K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

M A N B D C E F

a, bn dựa vào hình nha

b,bn kham khảo trên h

c,  Vì EFKH là hinhg bình hành nên để EFKH là hình chữ nhật thì EH⊥EF


Nối AG.

Ta lại có: EH//AG (EH là đường TB)

Và EH⊥EF EF⊥AG AG⊥BC (EF//BC)

mà ta đã có AG là đường trung tuyến của ΔABC

ΔABC cân tại A

Vâỵ để EFKH là hình chữ nhật thì tam giác ABC phải cân tại A.

Kéo dài AG cắt BC tại I

Khi đó SEFKH=EH.EF=12AG.12BC=14.23AI.BC=16AI.BC

Và SABC=BC.AI (vì ta đã CM được AI là đường cao)

SEFKHSABC=16AI.BCBC.AI=16

Vậy SEFKH=16SABC

Những gì mình làm chỉ có vậy thôi chúc bn hc tốt

12 tháng 6 2019

A B C E F K H G

a) E là trung điểm AB, F là trung điểm AC

=> EF là đường trung bình của tam giác ABC 

=> EF//BC

=> EFCB là hình bình hành

b) H là trung điểm BG, K là trung điểm CG

=> HK là đường trung bình của tam giác GBC

=> HK//=\(\frac{1}{2}\)BC

mà  EF//=\(\frac{1}{2}\) BC ( vì  EF là đường trung bình của tam giác ABC )

=> HK//=EF

=> HKEF là hình bình hành

c) Để EFHK là hình chữ nhật

ĐK là HE vuông EF (1)

Vì H là trung điểm BG

E là trung điểm AB

=> HE là đường trung bình BAG

=> EH//AG  (2)

mà EF//BC (3)

1, 2, 3 => AG vuông BC (4) 

Mặt khác G là giao  điểm 2 đường trung tuyến  CE, BFcủa tam giác ABC

=> G là trọng tâm

=> AG là đường trung tuyến  (5)

4, 5 => Tam giác ABC cân tại A

Vậy để EFKH là hình chữ nhật thì tam giác ABC cân tại A

Gọi M là giao điểm của BC

=> Diện tích tam giác ABC :=\(\frac{1}{2}\)AM. BC

Diện tích EFKH := EF.EH=\(\frac{1}{2}\)BC.\(\frac{1}{2}\)AG=\(\frac{1}{2}\)BC. \(\frac{1}{2}\).\(\frac{2}{3}\) AM=\(\frac{1}{6}\)AM.BC =\(\frac{1}{3}\)diện tíc ABC

=> Tự so sánh nhé!

a: Xét ΔABC có 

E là trung điểm của AB

F là trung điểm của AC

Do đó: EF là đường trung bình

=>EF//BC và EF=BC/2(1)

hay EFCB là hình thang

b: Xét ΔGBC có

K là trung điểm của GB

H là trung điểm của GC

Do đó: KH là đường trung bình

=>KH//BC và KH=BC/2(2)

Từ (1) và (2) suy ra EF=HK và EF=HK

hay EFKH là hình bình hành

Bài 1: Cho hbh ABCD. Trên các cạnh AB, CD lần lượt lấy các điểm M, N sao cho AM=DN. Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E, F. Chứng minh rằng:a) E và F đối xứng qua ABb) MEBF là hình thoic) Hbh ABCD phải có thêm điều kiện gì để BCNE là hình thang cân?Bài 2: Cho tam giác ABC cân tại A. Đường cao AH và E, M thứ tự là trung điểm AB và AC.a) chứng minh AH là trục đối xứng...
Đọc tiếp

Bài 1: Cho hbh ABCD. Trên các cạnh AB, CD lần lượt lấy các điểm M, N sao cho AM=DN. Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E, F. Chứng minh rằng:

a) E và F đối xứng qua AB

b) MEBF là hình thoi

c) Hbh ABCD phải có thêm điều kiện gì để BCNE là hình thang cân?

Bài 2: Cho tam giác ABC cân tại A. Đường cao AH và E, M thứ tự là trung điểm AB và AC.

a) chứng minh AH là trục đối xứng của tam giác ABC?

b) các tứ giác EMCB, BEMH, AEHM là hình gì? vì sao?

c) tìm điều kiện tam giác ABC để AEHM là hình vuông?

Trong trường hợp này tính diện tích tam giác BHE. Biết AB=4cm

Bài 3: Gọi E, F lần lượt là trung điểm AB, AC của tam giác ABC.

a) Tứ giác EFCB là hình gì? vì sao?

b) CE và BF cắt nhau tại G. Gọi K, H thứ tự là trung điểm của GC và GB. Chứng minh EFKH là hình bình hành.

c) Tìm điều kiện của tam giác ABC để EFKH là hình chữ nhật.

Khi đó so sánh diện tích EFKH với diện tích tam giác ABC

Vẽ hình và giải giúp mình nha. (bài nào làm được thì làm ạ)

Mình đang cần gấp.

Mơn nhìu~~

 

1
9 tháng 6 2019

1A)  Gọi I là giao điểm của EF và AB                                                                                                                                                                   Vì EF là đường trung trực của MB nên BE=BF                                                                                                                                             xét hai tam giác BEI và BFI thì chúng bằng nhau ( t. hợp ch-cgv)                                                                                                                 IE=IF; EF vuông góc AB  =) E và F đối xứng nhau qua AB nên ta chứng minh  được hai tam giác BEI và BF1 bằng nhau.                   1b) gọi I là giao điểm của MB và EF
ta có EI là đường trung bình của tam giác MEB 
nên tam giác MEB cân tại E => góc EMB = góc EBM
có EI là đường cao đồng thời là đường phân giác
nên góc MEI = góc BEI
ta có MN//BC//AD
hay ME//BF
nên góc MFI = góc IFB; góc EMB = góc FBM ( 2 góc slt)
mà góc MEI = góc BEI 
nên góc IFB = góc BEI
=> tam giác BEF cân tại B
lại có BI là tia phân giác (góc EBI = góc FBI=góc EMI)
hay BI là đường trung tuyến
ta có EF vuông góc với MB 
I là trung điểm của MB và EF
nên tứ giác MEBF là hình thoi                                                                                                                                                                   1c)*Vì EB // NC nên EBCN là hình thang có 2 đáy là EB và NC
để EBCN là hình thang cân thì EN = BC

22 tháng 8 2019

A B C E D H K G

a) Ta có:

DE là đường trung bình của tam giác ABC =>DE//= \(\frac{1}{2}\)BC

HK là đường trung bình của tam giác GBC => HK //=\(\frac{1}{2}\)BC (1)

=> DE//=HK => DEHK là hình bình hành

b) DEHK là hình chữ nhật 

điều kiện là: HE vuông góc HK 

mà HE là đường trung bình tam giác ABG => HE//=\(\frac{1}{2}\)AG  

lại có:  HK //=\(\frac{1}{2}\)BC ( theo (1))

=> AG vuông góc BC => AG là đường cao của tam giác ABC (2)

mà hai đường trung tuyến BD và CE cắt nhau tại G => G là trọng tâm tam giác ABC => AG là đường trung tuyến ABC (3)

Từ (2), (3) => tam giác ABC cân

c) Khi BD vuông góc với CE 

=> hình chữ nhật EDKH có EK vuông HD

=> EDKH là hình vuông.

29 tháng 4 2018

Kết quả hình ảnh cho ho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi H là trung điểm của GB, K là trung điểm của GCa) Chứng minh rằng tứ giác DEHK là hình bình hànhb) Tam giác ABC có điều kiện gì thì tứ giác DEHK là hình chữ nhậtc) Nếu các đường trung tuyến BD và CE vuông góc với nhau thì tứ giác DEHK là hình gì ?

a)

BD là đường trung tuyến của Δ ABC nên D là trung điểm của AC (1)

CE là đường trung tuyến của Δ ABC nên E là trung điểm của AB (2)

Từ (1) và (2) suy ra :

DE là đường trung bình của Δ ABC

=> DE // BC và DE = 1/2 BC

Δ BGC có H là trung điểm của GB và K là trung điểm của GC

suy ra HK là đường trung bình của Δ BGC

=> HK // BC và HK = 1/2 BC

Tứ giác DEHK có DE//BC, HK // BC và DE = HK = 1/2 BC

nên tứ giác

b) DEHK là hình bình hành nên

HG = GD = 1/2 HD và GE = GK = 1/2 EK

Để tứ giác DEHK là hình chữ nhật thì

HD = EK => 1/2 HD = 1/2 EK => GE = GD và GH = GK

GH = GK => 2GH = 2GK => GB = GC

Xét Δ GEB và Δ GDC có

GE = GD Góc EGB = góc DGC GB = GC => ΔGEB = ΔGDC (c.g.c) => BE = CD => 2BE = 2CD => AB = AC => ΔABC cân tại A Vậy để

tứ giác DEHK là hình chữ nhật thì

ΔABC cân tại A

c) BD ⊥ CE => HD ⊥ EK Hình bình hành DEHK có HD ⊥ EK nên DEHK là hình thoi Vậy

nếu các đường trung tuyến BD và CE vuông góc với nhau thì tứ giác DEHK là hình thoi

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.a) Chứng minh tứ giác MEPF là hình thoi.b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàngBài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻđường thẳng...
Đọc tiếp

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,
P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.
a) Chứng minh tứ giác MEPF là hình thoi.
b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.
c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàng
Bài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻ
đường thẳng song song với AC, AB lần lượt cắt AB tạt E, cắt AC tại F
a) Chứng minh EFCB là hình thang
b) Chứng minh AEMF là hình chữ nhật
c) Gọi O là trung điểm AM. Chứng minh: E và F đối xứng qua O.
d) Gọi D là trung điểm MC. Chứng minh: OMDF là hình thoi
Bài 3: Cho tam giác ABC có AB<AC. Gọi M, N, P lần lượt là trung điểm của AB,
AC, BC. Vẽ đường cao AH của tam giác ABC. Tứ giác HMNP là hình gì.
Bài 4: Cho tứ giác ABCD có góc DAB = góc BCD = 120 0 . Tính số đo của hai góc
còn lại để ABCD là hình bình hành.
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh CFDAEB .
c) Chứng minh CFBEAD .
Bài 6: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

5
2 tháng 3 2020

Bài 1:

A B C D M N P Q E F

a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)

\(\Rightarrow ME\)là đường trung bình tam giác ABC

\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)

Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)

\(\Rightarrow PE\)là đường trung bình của tam giác ADC

\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)

mà \(AD=BC\left(gt\right)\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)

CMTT: \(PE=FP,FM=ME\)

\(\Rightarrow ME=EP=PF=FM\)

Xét tứ giác MEPF có:

\(ME=EP=PF=FM\left(cmt\right)\)

\(\Rightarrow MEPF\)là hình thoi ( dhnb)

 b) Vì \(MEPF\)là hình thoi (cmt)

\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc)  (4)

Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)

\(\Rightarrow MQ\)là đường trung bình của tam giác ADB

\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)

Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)

\(\Rightarrow NP\)là đường trung bình của tam giác BDC

\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)

Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)

Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)

\(\Rightarrow MQPN\)là hình bình hành (dhnb)

\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)

Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm 

c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)

\(\Rightarrow QF\)là đường trung bình của tam giác ADB

\(\Rightarrow QF//AB\left(8\right)\)

CMTT: \(FN//CD\)và \(EN//AB\)

Mà Q,F,E,N thẳng hàng 

\(\Rightarrow AB//CD\)

Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện  \(AB//CD\)


 

2 tháng 3 2020

Tối về mình làm nốt  nhé giờ mình có việc