Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh:
∠(IDM) =∠(IDN) (vì DI là tia phân giác của ∠(MDN) (1)
∠(IDM) =∠(EDK) (vì 2 góc đối đỉnh) (2)
Từ (1) và (2) suy ra ∠(EDK) =∠(IDN) (điều phải chứng minh)
GT: DI là tia phân giác của \(\widehat{MDN}\)
\(\widehat{EDK}\) đối đỉnh với \(\widehat{IDM}\)
KL: \(\widehat{EDK}=\widehat{IDM}\)
Chứng minh (h.10)
(vì DI là tia phân giác của \(\widehat{MDN}\)) (1)
(vì 2 góc này đối đỉnh) (2)
Từ (1) và (2) suy ra \(\widehat{EDK}=\widehat{IDN}\)
Đó là điều phải chứng minh.
1) đề thiếu nhé
2) Sửa lại : AM | BC
+) Góc A + B + C = 180o => A + 50o + 50o = 180o => A = 80o
=> góc BAM = A/2 = 40o
+) Tam giác BAM có: góc BAM + B + AMB = 180o => 40o + 50o + AMB = 180o => AMB = 90o
=> AM | BC
vì hai góc AOB và COD là hai đối đỉnh mà hai góc đối đỉnh thì bằng nhau và 2goc đó mỗi góc được một tia phân giác phân thành hai góc bằng nhau và tạo thành một tia đối .
(tự vẽ hình)
a) Vì góc BOD và góc AOB là hai góc đối đỉnh nên \(\widehat{BOD}=180^o-\widehat{AOB}=180^o-80^o=100^o\) (3)
=> Tia OA và tia OD đối nhau.(1)
Vì góc AOC và góc AOB là hai góc đối đỉnh nên \(\widehat{AOC}=180^o-\widehat{AOB}=180^o-80^o=100^o\) (4)
=> Tia OB và tia OC đối nhau.(2)
Từ (1);(2);(3);(4) suy ra: góc AOC và góc BOD là hai góc đối đỉnh.
b) Xét: Tia Om, On lần lượt là tia phân giác của góc AOC, BOD.
- Vì tia Om là tia phân giác của góc AOC nên góc COm=MOA=1/2. AOC.
- Vì tia ON là tia phân giác của góc BOD nên góc BOn=DOn=1/2.DOB.
Mà góc AOC = DOB => COm= BOn
Vì CO và OB là hai tia đối nhau
=> \(\widehat{COm}+\widehat{mOB}=180^o\)
=> \(\widehat{COn}+\widehat{BOn}=180^o\)
=> \(\widehat{COm}+\widehat{BOn}=180^o\)
hay Tia Om và On là 2 tia đối nhau.
Chúc cậu học tốt!
Chứng minh:
\(\widehat{IDM}=\widehat{IDN}\) ( vì \(DI\) là tia pân giác của \(\widehat{MDN}\)) (1)
\(\widehat{IDM}=\widehat{EDK}\) ( hai góc đối đỉnh )
Từ (1) và (2) suy ra : \(\widehat{EDK}=\widehat{IDN}\left(đpcm\right)\)
Chúc bạn học tốt!
Ta có: Chứng minh:IDM=IDN (Vì DI là tia phân giác của MDN ) (1)
Ta có: IDM=EDK (Vì 2 góc đối đỉnh) (2)
Từ (1) và (2) suy ra: EDK=IDN (điều phải chứng minh)