K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2020

a)\(2\overrightarrow{OA}+\overrightarrow{DB}+\overrightarrow{DC}\)

\(=2\overrightarrow{OA}+\overrightarrow{DO}+\overrightarrow{DB}+\overrightarrow{DO}+\overrightarrow{DC}\)

\(=2\overrightarrow{OA}-2\overrightarrow{OA}=\overrightarrow{O}\)(ĐPCM)

b) \(20\overrightarrow{A}+\overrightarrow{OB}+\overrightarrow{OC}\)

\(=2\overrightarrow{OA}+\overrightarrow{DO}+\overrightarrow{OB}+\overrightarrow{DC}-\overrightarrow{DO}\)

\(=20\overrightarrow{A}-20\overrightarrow{A}+4\overrightarrow{OD}=4\overrightarrow{OD}\)(ĐPCM)

22 tháng 7 2018

a) ta có : \(2\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}=2\overrightarrow{DA}+2\overrightarrow{DM}=2\left(\overrightarrow{DA}+\overrightarrow{DM}\right)=\overrightarrow{0}\left(đpcm\right)\)

b) ta có : \(2\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=2\overrightarrow{OA}+2\overrightarrow{OM}=2\left(\overrightarrow{OA}+\overrightarrow{OM}\right)=2\left(2\overrightarrow{OD}\right)=4\overrightarrow{OD}\left(đpcm\right)\)

30 tháng 3 2017

a) Gọi M là trung điểm của BC nên:

Ta có:

\dpi{100} \overrightarrow {DB} + \overrightarrow {DC} = \left( {\overrightarrow {DM} + \overrightarrow {MB} } \right) + \left( {\overrightarrow {DM} + \overrightarrow {MC} } \right) = 2\overrightarrow {DM} + \left( {\overrightarrow {MB} + \overrightarrow {MC} } \right) = 2\overrightarrow {DM} + \overrightarrow 0 = 2\overrightarrow {DM}

\dpi{100} \overrightarrow {MB} = - \overrightarrow {MC}

Mặt khác, do D là trung điểm của đoạn AM nên \dpi{100} \overrightarrow {DM} = - \overrightarrow {DA}

Khi đó: \dpi{100} 2\overrightarrow {DA} + \overrightarrow {DB} + \overrightarrow {DC} = 2\overrightarrow {DA} + 2\overrightarrow {DM} = 2\left (\overrightarrow {DA} + \overrightarrow {DM} \right ) = \overrightarrow 0

b) Ta có:

\dpi{100} 2\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = 4\overrightarrow {OD} \Leftrightarrow 2\left( {\overrightarrow {OA} - \overrightarrow {OD} } \right) + \left( {\overrightarrow {OB} - \overrightarrow {OD} } \right) + \left( {\overrightarrow {OC} - \overrightarrow {OD} } \right) = \overrightarrow 0

\dpi{100} \Leftrightarrow 2\overrightarrow {DA} + \overrightarrow {DB} + \overrightarrow {DC} = \overrightarrow 0 luôn đúng theo câu a

Vậy:\dpi{100} \Leftrightarrow 2\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = 4\overrightarrow {O{\rm{D}}} , với O là điểm tùy ý

Lần sau nhớ thêm dấu vector vào cho dễ nhìn bạn nha :))

a) M là trung điểm BC \(\Rightarrow2\overrightarrow{DM}=\overrightarrow{DB}+\overrightarrow{DC}\Leftrightarrow2\overrightarrow{MD}+\overrightarrow{DB}+\overrightarrow{DC}=\overrightarrow{0}\)

 D là trung điểm AM \(\Rightarrow\overrightarrow{DA}=\overrightarrow{MD}\)

\(2\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}=2\overrightarrow{MD}+\overrightarrow{DB}+\overrightarrow{DC}=\overrightarrow{0}\)

b) M là trung điểm BC \(\Rightarrow2\overrightarrow{OM}=\overrightarrow{OB}+\overrightarrow{OC}\)

D là trung điểm AM \(\Rightarrow2\overrightarrow{OD}=\overrightarrow{OA}+\overrightarrow{OM}\Rightarrow4\overrightarrow{OD}=2\overrightarrow{OA}+2\overrightarrow{OM}=2\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\)

16 tháng 5 2018

Giải bài 4 trang 17 sgk Hình học 10 | Để học tốt Toán 10

Giải bài 4 trang 17 sgk Hình học 10 | Để học tốt Toán 10

25 tháng 12 2020

1.

Gọi G là trọng tâm tam giác

\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}\)

\(\Leftrightarrow3\overrightarrow{OG}=\overrightarrow{0}\)

\(\Leftrightarrow O\equiv G\)

\(\Rightarrow O\) là trọng tâm tam giác ABC

\(\Rightarrow\Delta ABC\) đều

Gọi độ dài các cạnh tam giác là a

\(\overrightarrow{BN}.\overrightarrow{AM}=\dfrac{1}{4}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\left(\overrightarrow{BA}+\overrightarrow{BC}\right)=-\dfrac{1}{4}a^2-\dfrac{1}{8}a^2-\dfrac{1}{8}a^2+\dfrac{1}{2}a^2=0\)

Mặt khác \(\overrightarrow{BN}.\overrightarrow{AM}=BN.AM.cos\left(\overrightarrow{AM};\overrightarrow{BN}\right)\)

\(\Rightarrow BN.AM.cos\left(\overrightarrow{AM};\overrightarrow{BN}\right)=0\Rightarrow cos\left(\overrightarrow{AM};\overrightarrow{BN}\right)=0\Rightarrow\left(\overrightarrow{AM};\overrightarrow{BN}\right)=90^o\)

25 tháng 12 2020

\(BD=\dfrac{AB}{cos45^o}=\dfrac{a}{\dfrac{\sqrt{2}}{2}}=a\sqrt{2}\)

\(\overrightarrow{BQ}.\overrightarrow{BP}=\dfrac{1}{4}\left(\overrightarrow{BA}+\overrightarrow{BD}\right)\left(\overrightarrow{BC}+\overrightarrow{BD}\right)\)

\(=\dfrac{1}{4}BA.BC.cos90^o+\dfrac{1}{4}BA.BD.cos45^o+\dfrac{1}{4}BD.BC.cos45^o+\dfrac{1}{4}BD^2\)

\(=\dfrac{1}{4}a^2+\dfrac{1}{4}a^2+\dfrac{1}{2}a^2=a^2\)

27 tháng 12 2023

Ta có:

\(\overrightarrow{IB}+\overrightarrow{IC}=2\overrightarrow{IM}\) (1)

Mặt khác: I là trung điểm AM

\(\Rightarrow\overrightarrow{AM}=2\overrightarrow{IM}\) (2)

Từ (1) và (2)

\(\Rightarrow\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{AM}\)

NV
5 tháng 11 2021

Do M là trung điểm BC nên: \(\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)

Tương tự: \(\overrightarrow{BN}=\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{BC}\) ; \(\overrightarrow{CP}=\dfrac{1}{2}\overrightarrow{CA}+\dfrac{1}{2}\overrightarrow{CB}\)

Cộng vế:

\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{BC}+\dfrac{1}{2}\overrightarrow{CA}+\dfrac{1}{2}\overrightarrow{CB}\)

\(=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{BA}\right)+\dfrac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{CA}\right)+\dfrac{1}{2}\left(\overrightarrow{BC}+\overrightarrow{CB}\right)=\overrightarrow{0}\)

b. Từ câu a ta có:

\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{AO}+\overrightarrow{OM}+\overrightarrow{BO}+\overrightarrow{ON}+\overrightarrow{CO}+\overrightarrow{OP}=\overrightarrow{0}\)

\(\Leftrightarrow-\overrightarrow{OA}+\overrightarrow{OM}-\overrightarrow{OB}+\overrightarrow{ON}-\overrightarrow{OC}+\overrightarrow{OP}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OM}+\overrightarrow{ON}+\overrightarrow{OP}\) (đpcm)