Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận thấy tứ giác MFNE có góc M và N vuông --> góc MFN+góc MEN= 2 vuông (*)
Lại có các tam giác AFB và MEN đồng dạng (vì có góc NME=gocFAB và góc MNE =góc FBA), suy ra góc AFB=góc MEN --> góc MFN=góc MEN (**), từ (*); (**) suy ra góc MFN=góc MEN =1 vuông
--> tứ giác MENF là hình chữ nhật, từ đó dễ dàng suy ra tiếp FE vuông góc với AB
b) Gọi I ; K lần lượt là trung điểm của O1O2 và MN. Áp dụng Talét dễ dàng tính được IK=5
--> KD^2=ID^2-IK^2 =9^2 -5^2 =56 --> CD=2.KD= 4√14
Bài 3:
a: Xét ΔABM và ΔACN có
AB=AC
góc ABM=góc ACN
BM=CN
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH=góc CAK
Do đó; ΔAHB=ΔAKC
Suy ra: AH=AK và BH=CK
c: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có
MB=CN
góc M=góc N
Do đó ΔHBM=ΔKCN
Suy ra: góc HBM=góc KCN
=>góc OBC=góc OCB
hay ΔOBC can tại O
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
Theo đầu bài thì CD cắt AB ở E (D nằm giữa E và C) nhưng D không thể nằm giữa E và C. DE = 2R = AB nhưng DE chỉ bằng R nên DE không thể bằng AB nên bài toán này không có cách giải.
\(S_{BMC_{ }_{ }}=\frac{BM.CA}{2}=\frac{20.60}{2}=600cm^2\)
Ta có MN là đường tb của tam giác ABC => MN//AC và MN.2 = AC
=> MN là đường cao của AB ,MN=30 cm
=> SABN=30.40:2=600cm2
b)SAMNC=(MN+AC) .AM:2=(30+60).20:2=900cm2
c)SMAC=MA.AC:2
SANC=CA.MA:2
=> SMAC=SANC=>SAMO=SCON
câu 9
a) ta có AB=6
=> AM=BM=3 cm
mà MC=AM-MC=3-2=1 cm
MD=MB-BD=3-2=1 cm
=> MC=MD
=> M là trung điểm của CD
b) C là trung điểm của AD
D là trung điểm của BC
câu 10
a) AB + BO có giá trị nhỏ nhất khi và chỉ khi <=> O trùng B.
b) AB + BO = 2BO <=> AB = BO <=> O trùng A.
c) AB + BO = 3BO <=> AB = 2BO <=> O là trung điểm của AB.
Chúc bạn học tốt
a) Ta thấy chiều cao hạ từ C xuống đường thẳng AD là CA. Vậy thì
\(S_{BMC}=\frac{1}{2}.MB.CA=\frac{1}{2}.\frac{AB}{2}.AC=\frac{40.60}{4}=600\left(cm^2\right)\)
Ta thấy chiều cao hạ từ A xuống BC là AH. Vậy thì \(\frac{S_{ANB}}{S_{ABC}}=\frac{\frac{1}{2}.BN.AH}{\frac{1}{2}.BC.AH}=\frac{1}{2}\)
\(S_{ABC}=\frac{1}{2}.40.60=1200\left(cm^2\right)\Rightarrow S_{ANB}=600\left(cm^2\right)\)
b) Ta thấy tam giác BMN và tam giác ANB có chung chiều cao. Vậy \(\frac{S_{BMN}}{S_{ANB}}=\frac{MB}{AB}=\frac{1}{2}\Rightarrow S_{BMN}=600:2=300\left(cm^2\right)\)
Từ đó ta có \(S_{AMNC}=S_{ABC}-S_{BMN}=1200-300=900\left(cm^2\right)\)
c) Ta thấy tam giác MNC và tam giác BMN có chung chiều cao và đáy bằng nhau. Vậy diện tích của chúng bằng nhau.
Tam giác MNA và BMN cũng có chung chiều cao, đáy bằng nhau, vậy diện tích của chúng cũng bằng nhau.
Từ đây suy ra \(S_{MNA}=S_{MNC}\Rightarrow S_{AMO}+S_{MON}=S_{CNO}+S_{MON}\Rightarrow S_{AMO}=S_{CNO}.\)
Cho hình thang ABCD có đáy CD = AB, hai đường chéo AC và BD cắt nhau tại I. Biết tổng diện tích 2 tam giác AID và BIC là 9,1 cm2. a) So sánh diện tích 2 tam giác AID và BIC.
b) Tính diện tích hình thang ABCD
1: Vì O là trung điểm của AB
nên \(OA=OB=\dfrac{AB}{2}=\dfrac{6}{2}=3\left(cm\right)\)
Do đó: A,B đều nằm trên đường tròn (O;3cm)
2:
a) Ta có: \(\widehat{AOx}+\widehat{BOx}=180^0\)(hai góc kề bù)
\(\Leftrightarrow\widehat{BOx}+60^0=180^0\)
hay \(\widehat{BOx}=120^0\)
Đầu tiên, với điều kiện AC^2 = BC, ta có thể suy ra AC = BC. Do đó, tam giác ABC là tam giác cân tại A và B.
Tiếp theo, vì CD vuông góc AB, ta có thể suy ra tam giác ACD và tam giác BCD là tam giác vuông.
Do DE là đường kính của đường tròn O, nên tam giác ADE và tam giác BDE là tam giác vuông tại D và E.
Vì tam giác ABC là tam giác cân, ta có thể suy ra tỉ số diện tích DCE và ABD bằng tỉ số diện tích tam giác DCE và tam giác ABD.
Tuy nhiên, để tính diện tích của các tam giác này, chúng ta cần biết thêm thông tin về kích thước của các đoạn thẳng và góc giữa chúng.
Vì vậy, để tìm tỉ số diện tích DCE và ABD, cần có thêm thông tin chi tiết về hình học của hình và các giá trị số cụ thể.