K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2020

gt\(\Leftrightarrow2+\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}=8\)

\(\Leftrightarrow\Sigma\frac{a}{b}+\Sigma\frac{b}{a}=6\)

mà theo bđt AM-GM:\(\Sigma\left(\frac{a}{b}+\frac{b}{a}\right)\ge2.3=6=vp\)

Vậy nên a=b=c hay tam giác ABC đều.

5 tháng 3 2020

Ta có:
(1 + b/a)(1 + c/b)(1 + a/c) = 8
<=> (a + b)/a.(b + c)/b.(c + a)/c = 8
<=> (a + b)(b + c)(c + a) = 8abc
Áp dụng bất đẳng thức Cauchy cho các số dương a, b, c ta được:
a + b ≥ 2√(ab)
b + c ≥ 2√(bc)
c + a ≥ 2√(ca)
=> (a + b)(b + c)(c + a) ≥ 8√(a^2.b^2.c^2) = 8|abc| = 8abc (vì a, b,c > 0)
Dấu "=" xảy ra <=> a = b; b = c; c = a <=> a = b = c <=> ΔABC đều

5 tháng 3 2020

https://olm.vn/hoi-dap/detail/2293581520.html cậu tham khảo nhé !

5 tháng 3 2020

\(\Leftrightarrow\left(1+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}\right)\left(1+\frac{c}{b}\right)=8\)

\(\Leftrightarrow2+\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}+\frac{a}{c}+\frac{c}{a}=8\)

\(\Leftrightarrow\frac{\left(a^2+b^2\right)c+\left(c^2+a^2\right)b+\left(b^2+c^2\right)a}{abc}=6\)

\(\Leftrightarrow a^2b+ab^2+b^2c+bc^2+a^2c+ac^2=6abc\)(1)

\(\Leftrightarrow\left(a^2b-2abc+bc^2\right)+\left(ab^2-2abc+ac^2\right)+\left(a^2c-2abc+b^2c\right)=0\)

\(\Leftrightarrow b\left(a-c\right)^2+a\left(b-c\right)^2+c\left(a-b\right)^2=0\)

Mà a,b,c khác 0 nên a=b=c

13 tháng 10 2016

Ta có

\(1+\frac{b}{a}=\frac{a+b}{a}\ge2\frac{\sqrt{ab}}{a}\)

\(1+\frac{c}{b}\ge2\frac{\sqrt{bc}}{b}\)

\(1+\frac{a}{c}\ge2\frac{\sqrt{ac}}{c}\)

Nhân vế theo vế ta được

\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\ge8\frac{\sqrt{ab.bc.ca}}{abc}=8\)

Dấu = xảy ra khi a = b = c hay tam giác ABC đều

22 tháng 10 2018

Ta thấy: a;b;c là 3 cạnh của 1 tam giác nên a;b;c >0

Từ giả thiết, ta có: \(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=8abc\)(*)

Áp dụng BĐT AM-GM (với a;b;c > 0)\(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)(**)

Dấu "=" xảy ra <=> a=b=c

Từ (*) và (**) => \(a=b=c\) tức là \(\Delta\)ABC đều (đpcm).

13 tháng 10 2016

Ta có

\(1+\frac{b}{a}=\frac{a+b}{a}\ge2\frac{\sqrt{ab}}{a}\)

\(1+\frac{c}{b}\ge2\frac{\sqrt{bc}}{b}\)

\(1+\frac{a}{c}\ge2\frac{\sqrt{ac}}{c}\)

Nhân vế theo vế ta được

\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\ge8\frac{\sqrt{ab.bc.ca}}{abc}=8\)

Dấu = xảy ra khi a = b = c hay tam giác ABC đều

21 tháng 2 2016

Cách 1 : giả sử a,b,c là 3 cạnh của tam giác đều =>a=b=c

=>\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

Vậy a,b,c là ba cạnh của tam giác đều.

Cách 2: 

\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\Leftrightarrow\frac{c}{b}+\frac{b}{a}+\frac{c}{a}+\frac{a}{c}+\frac{a}{b}+\frac{b}{c}=6\)

<=>\(\left(\frac{c}{b}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)=6\)

Áp dụng BĐT cô-si cho các cặp số không âm sau: c/b và b/c ; b/a và a/b ; c/a và a/c ta được:

\(\left(\frac{c}{b}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge2+2+2=6\)

Mà \(\left(\frac{c}{b}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)=6\)

Do đó chỉ nhận khi dấu "=" xảy ra

Dấu ''=" xảy ra khi a=b=c

Vậy tam giác a,b,c là 3 cạnh của tam giác đều.

Cách 2 khó hỉu :D

21 tháng 2 2016

Bài này bạn dùng cách phá ngoặc và nhóm các hạng tử sẽ ra. Mình đã làm bài này rồi. Bạn tìm trong câu hỏi tương tự sẽ có

30 tháng 8 2016

Bằng nhau

30 tháng 8 2016

a=b=c=1 suy ra Tam giác ABC là tam giác đều vì có độ dài 3 canh = nhau .