K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2016

\(y=4x^3-4mx=4x\left(x^2-m\right)=0\Leftrightarrow\begin{cases}x=0\\x^2=m\end{cases}\)

Hàm số đã cho có 3 điểm cực trị <=> phương trình y=0 có 3 nghiệm phân biệt và y đổi dấu khi x đi qua các nghiệm đó <=>m>0

- Khi đó 3 điểm cực trị của đồ thị hàm số là :

\(A\left(0;m-1\right);B\left(-\sqrt{m};-m^2=m-1\right);\left(\sqrt{m};-m^2=m-1\right)\)

\(S_{ABC}=\frac{1}{2}\left|y_B-y_A\right|.\left|x_C-x_B\right|=m^2\sqrt{m}\)\(AB=AC=\sqrt{m^4+m},BC=2\sqrt{m}\)

\(R=\frac{AB.AC.BC}{4S_{ABC}}=1\Leftrightarrow\frac{\left(m^4+m\right)2\sqrt{m}}{4m^2\sqrt{m}}=1\)\(\Leftrightarrow m^3-2m+1=0\)

                                                                \(\Leftrightarrow\begin{cases}m=1\\m=\frac{\sqrt{5}-1}{2}\end{cases}\)

7 tháng 2 2017

TXĐ: .

Ta có  

Để hàm số có 3 điểm cực trị thì phương trình y'=0 có 3 nghiệm phân biệt  

Khi đó ta có:

y' = 0

.

Ta có:  

Gọi R là bán kính đường tròn ngoại tiếp tam giác ABC, khi đó ta có:

Khi đó tổng các phần tử của S là

 

Chọn C

28 tháng 2 2019

Chọn C.

6 tháng 9 2017

Chọn B

[Phương pháp tự luận]

Hàm số có 3 điểm cực trị khi m > 0 

Ba điểm cực trị là

Gọi I là trung điểm của  B C ⇒ I ( 0 ; m - m 2 )

S ∆ A B C = 1 2 A I . B C = m m 2

Chu vi của ∆ A B C là:

Bán kính đường tròn nội tiếp  ∆ A B C là:

r = S ∆ A B C p = m m 2 m + m 4 + m

Theo bài ra: r > 1 ⇔ m m 2 m + m 4 + m > 1  

⇔ m m 2 ( m + m 4 - m ) m 4 > 1 (vì m > 0 )

So sánh điều kiện suy ra m > 2 thỏa mãn.

[Phương pháp trắc nghiệm]

Sử dụng công thức

Theo bài ra:

 

So sánh điều kiện suy ra m > 2 thỏa mãn.

22 tháng 4 2016

Ta có \(y=4x^3-4mx=4x\left(x^2-m\right)=0\Leftrightarrow x=0\) hoặc \(x^2=m\)

Hàm số đã cho có 3 điểm cực trị \(\Leftrightarrow\) phương trình y' = 0 có 3 nghiệm phân biệt và y' đổi dấu khi x đi qua các nghiệm đó <=> m > 0. Khi đó 3 điểm cực trị của đồ thị hàm số là :

\(A\left(0;m-1\right);B\left(-\sqrt{m};m^2+m-1\right);C\left(\sqrt{m};-m^2+m-1\right)\)

a) Ta có \(S_{\Delta ABC}=\frac{1}{2}\left|y_B-y_A\right|.\left|y_C-y_B\right|=m^2\sqrt{m}\)

              \(AB=AC=\sqrt{m^4+m};BC=2\sqrt{m}\)

              \(R=\frac{AB.AC.BC}{4S_{\Delta ABC}}=1\Leftrightarrow\frac{\left(m^4+m\right)2\sqrt{m}}{4m^2\sqrt{m}}=1\)

                                            \(\Leftrightarrow m^3-2m+1=0\Leftrightarrow m=1\) hoặc \(m=\frac{\sqrt{5}-1}{2}\)

Vậy \(m=1;m=\frac{\sqrt{5}-1}{2}\) là giá trị cần tìm

b) Vì B, C đối xứng nhau qua trục tung nên BC luôn vuông góc OA

Do đó O là trực tâm tam giác ABC khi và chỉ khi \(\overrightarrow{OB}.\overrightarrow{AC}=0\)

\(\overrightarrow{OB}\left(-\sqrt{m};-m^2+m-1\right);\overrightarrow{AC}\left(\sqrt{m};-m^2\right)\)

Suy ra \(-m-m^2\left(-m^2+m-1\right)=0\Leftrightarrow m\left(-m^3+m^2-m+1\right)=0\)

                                                             \(\Leftrightarrow m\left(m-1\right)\left(m^2+1\right)=0\Leftrightarrow m=0\) hoặc m = 1

Vậy m = 0 hoặc m = 1 là giá trị cần tìm

c) Rõ ràng tam giác ABC cân tại A và truyên tuyến kẻ từ A thuộc Oy. Do đó O là trọng tâm  của tam giác ABC

<=> \(y_A+2y_B=0\)

\(\Leftrightarrow m-1+2\left(-m^2+m-1\right)=0\)

\(\Leftrightarrow2m^2-3m+3=0\) vô nghiệm

Vậy không tồn tai giá trị m thỏa mãn yêu cầu bài toán

14 tháng 1 2020

bn ơi cho mk hỏi cái công thức tính S tam giác ABC=1/2|yB-yA|.|yC-yB| ở đâu vậy ạ

 

27 tháng 2 2017

Chọn C

24 tháng 7 2018

Chọn B

Ta có :

Hàm số đã cho có ba điểm cực trị khi m > 0(*)

Khi đó ba điểm cực trị của đồ thị hàm số là

A ( 0 ; m - 1 ) ,   B ( - m ; - m 2 + m - 1 )

S ∆ A B C = 1 2 y B - y A x c - x B

Kết hợp điều kiện (*) ta có

[Phương pháp trắc nghiệm]

Áp dụng công thức

Kết hợp điều kiện (*) ta có

10 tháng 5 2019

Chọn B

Ta có :

Hàm số đã cho có ba điểm cực trị khi m > 0(*)

Khi đó ba điểm cực trị của đồ thị hàm số là

A ( 0 ; m - 1 ) ,   B ( - m ; - m 2 + m - 1 )

S ∆ A B C = 1 2 y B - y A x c - x B

Kết hợp điều kiện (*) ta có

[Phương pháp trắc nghiệm]

Áp dụng công thức

Kết hợp điều kiện (*) ta có