Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(1
Ta có:
\(\frac{a}{a+b}>\frac{a}{a+b+c}\)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)
\(\Rightarrow M>\frac{a+b+c}{a+b+c}\)
\(\Rightarrow M>1\) (1)
Ta có:
\(\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c}\)
\(\frac{b}{b+c}< 1\Rightarrow\frac{b}{b+c}< \frac{a+b}{a+b+c}\)
\(\frac{c}{c+a}< 1\Rightarrow\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{c+b}{a+b+c}\)
\(\Rightarrow M< \frac{2\left(a+b+c\right)}{a+b+c}\)
\(\Rightarrow M< 2\) (2)
Từ (1) và (2) => 1 < M < 2
=> M không phải là một số nguyên dương (đpcm)
p+q+r=bc+a+ab+c+ca+b=2(a+b+c)2
=> p+q+r chẵn
+) nếu p+q+r chẵn thì ít nhất 2 trong 3 số đó bằng nhau
+) nếu có một số bằng 2 thì gỉa sử p=2
<=> p= bc+a=1+1
Mà a,b,c nguyên dương => 2=1+1 = bc+a= ab+c
=> p=q (đpcm)
a) (a-b+c)-(d+c-b)
= a - b + c - d - c + b
= a - d
b) -35 chia hết cho n-8
=> n - 8 thuộc Ư(-35)
=> n - 8 thuộc {-1; 1; -5; 5; -7; 7; - 35; 35}
=> n thuộc {7; 9; 3; 13; 1; 15; -27; 43}
c) a và b là 2 số nguyên khác nhau
=> a - b và b - a khác 0
a - b và b - a là 2 số đối nhau
=> (a - b)(b - a) là số nguyên âm
\(a,\left(a-b+c\right)-\left(d+c-b\right)\)
\(< =>a-b+c-d-c+b\)
\(< =>a-d\)
\(b,-35⋮n-8\)
\(=>n-8\inƯ\left(-35\right)\)
Nên ta có bảng sau :
n-8 | 1 | -1 | -5 | 55 | -7 | 7 | -35 | 35 |
n | 7 | 9 | 3 | 13 | 1 | 15 | -27 | 43 |
Vậy ...
\(c,\)a và b là 2 số nguyên khác nhau
=>a-b khác b-a
=>a-b và b-a là 2 số đối nhau
=>(a-b).(b-a) là số nguyên âm
Với n>0 thì \(\left|n\right|+n=n+n=2n⋮2\)
Với n=0 thì \(\left|n\right|+n=\left|0\right|+0=0⋮2\)
Với n<0 thì \(\left|n\right|+n=\left(-n\right)+n=0⋮2\)
Vậy với mọi n thì \(\left|n\right|+n⋮2\)
Áp dụng ta có:\(S=\left|a-b\right|+\left|b-c\right|+\left|c-d\right|+\left|d-a\right|\)
\(=\left|a-b\right|+\left(a-b\right)+\left|b-c\right|+\left(b-c\right)+\left|c-d\right|+\left(c-d\right)+\left|d-a\right|+\left(d-a\right)⋮2\)
\(\Rightarrow\)S là số chẵn
S = - ( a - b - c ) + ( - c + b + a ) - ( a + b )
S= - a + b + c - c + b + a - a - b
S= ( -a + a - a ) + ( b + b - b ) + ( c - c )
S= -a + b
S= b - a mà a > b
=> S là một số nguyên âm tik nhá ^^