K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: \(A=\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-\sqrt{x}+1}-\dfrac{x+2}{x\sqrt{x}+1}\)

\(=\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-\sqrt{x}+1}-\dfrac{x+2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{x-\sqrt{x}+1+2\left(\sqrt{x}+1\right)-x-2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{-\sqrt{x}-1+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{1}{x-\sqrt{x}+1}\)

2: A>=4/3

=>\(A-\dfrac{4}{3}>=0\)

=>\(\dfrac{1}{x-\sqrt{x}+1}-\dfrac{4}{3}>=0\)

=>\(\dfrac{3-4x+4\sqrt{x}-4}{3\left(x-\sqrt{x}+1\right)}>=0\)

=>\(-4x+4\sqrt{x}-1>=0\)

=>\(4x-4\sqrt{x}+1< =0\)

=>\(\left(2\sqrt{x}-1\right)^2< =0\)

mà \(\left(2\sqrt{x}-1\right)^2>=0\forall x>=0\)

nên \(2\sqrt{x}-1=0\)

=>\(\sqrt{x}=\dfrac{1}{2}\)

=>\(x=\dfrac{1}{4}\left(nhận\right)\)

3 tháng 12 2023

kết quả phần 1 đâu bn

8 tháng 9 2021

3.C

6.A

8.D

9.B

10.D

9 tháng 12 2021

3c

6a

8c

9b

10d

9 tháng 12 2021

08:43 :vvvv

9 tháng 12 2021

BTVN :))

8 tháng 12 2023

loading...  

Câu 1:

1:

a: \(\dfrac{1}{2}x-3=0\)

=>\(\dfrac{1}{2}x=3\)

=>\(x=3:\dfrac{1}{2}=3\cdot2=6\)

b: \(3x^2-12x=0\)

=>\(3x\cdot x-3x\cdot4=0\)

=>\(3x\left(x-4\right)=0\)

=>x(x-4)=0

=>\(\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

2: 

a: Phương trình hoành độ giao điểm là:

\(\dfrac{1}{2}x^2=-x+\dfrac{3}{2}\)

=>\(x^2=-2x+3\)

=>\(x^2+2x-3=0\)

=>(x+3)(x-1)=0

=>\(\left[{}\begin{matrix}x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)

Khi x=-3 thì \(y=\dfrac{1}{2}\cdot\left(-3\right)^2=\dfrac{1}{2}\cdot9=4,5\)

Khi x=1 thì \(y=\dfrac{1}{2}\cdot1^2=\dfrac{1}{2}\)

b: Gọi (d1): y=ax+b(a<>0) là phương trình đường thẳng cần tìm

Thay x=2 và y=2 vào (d), ta được:

\(a\cdot2+b=2\)

=>2a+b=2

=>b=2-2a

=>y=ax+2-2a

Phương trình hoành độ giao điểm là:

\(\dfrac{1}{2}x^2=ax+2-2a\)

=>\(\dfrac{1}{2}x^2-ax-2+2a=0\)

\(\text{Δ}=\left(-a\right)^2-4\cdot\dfrac{1}{2}\cdot\left(2a-2\right)\)

\(=a^2-2\left(2a-2\right)=a^2-4a+4=\left(a-2\right)^2\)

Để (P) tiếp xúc với (d1) thì Δ=0

=>a-2=0

=>a=2

=>b=2-2a=2-4=-2

Vậy: Phương trình đường thẳng cần tìm là y=2x-2

18 tháng 9 2021

a)\(đkx\ge1,x\ne-1\)

\(\sqrt{\dfrac{x-1}{x+1}}=2\)

\(\Leftrightarrow\dfrac{x-1}{x+1}=4\)

\(\Leftrightarrow x-1=4x-4\)

\(\Leftrightarrow x=1\)(nhận)

Vậy S=\(\left\{1\right\}\)

c)đk\(25x^2-10x+1=\) \(\left(5x-1\right)^2\ge0\Leftrightarrow x\ge\dfrac{1}{5}\)

\(\sqrt{25x^2-10x+1}+2x=1\)

\(\Leftrightarrow\sqrt{\left(5x-1\right)^2}+2x=1\)

\(\Leftrightarrow5x-1+2x=1\)

\(\Leftrightarrow x=\dfrac{2}{7}\)(nhận)

Vậy S=\(\left\{\dfrac{2}{7}\right\}\)

c: Ta có: \(\sqrt{25x^2-10x+1}+2x=1\)

\(\Leftrightarrow\left|5x-1\right|=1-2x\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-1=1-2x\left(x\ge\dfrac{1}{5}\right)\\5x-1=2x-1\left(x< \dfrac{1}{5}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{7}\left(nhận\right)\\x=0\left(nhận\right)\end{matrix}\right.\)

a) Ta có: \(P=\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\left(\dfrac{3\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}+2}{\sqrt{a}+1}\right)\)

\(=\dfrac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}+\dfrac{a-1}{\sqrt{a}}\cdot\dfrac{3\sqrt{a}\left(\sqrt{a}+1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}+\dfrac{3a+3\sqrt{a}-\left(a-\sqrt{a}+2\sqrt{a}-2\right)}{\sqrt{a}}\)

\(=2+\dfrac{3a+3\sqrt{a}-a+\sqrt{a}-2\sqrt{a}+2}{\sqrt{a}}\)

\(=\dfrac{2\sqrt{a}+2a+2\sqrt{a}+2}{\sqrt{a}}\)

\(=\dfrac{2\left(a+2\sqrt{a}+1\right)}{\sqrt{a}}\)

\(=\dfrac{2\left(\sqrt{a}+1\right)^2}{\sqrt{a}}\)

b) Ta có: \(P-6=\dfrac{2\left(\sqrt{a}+1\right)^2-6\sqrt{a}}{\sqrt{a}}\)

\(=\dfrac{2a+4\sqrt{a}+2-6\sqrt{a}}{\sqrt{a}}\)

\(=\dfrac{2\left(a-\sqrt{a}+1\right)}{\sqrt{a}}>0\forall a\) thỏa mãn ĐKXĐ

hay P>6