Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔAHB vuông tại H và ΔAEC vuông tại E có
góc EAC chung
=>ΔAHB đồng dạng với ΔAEC
=>AH/AE=AB/AC
=>AH*AC=AE*AB
b: Xét ΔHCB vuông tại H và ΔFAC vuông tại F có
góc HCB=góc FAC
=>ΔHCB đồng dạng với ΔFAC
=>CH/AF=CB/CA
=>CH*CA=CB*AF=AD*AF
=>AB*AE+AD*AF=AC^2
Ban tu ve hinh nha
a) Xet \(\Delta BHC\perp.tai.H\) co
\(\hept{\begin{cases}K.la.trung.diem.BH\\N.la.trung.diem.HC\end{cases}\Rightarrow KN.la.duong.trung.binh}\)
=> KN // BC va KN=1/2 BC
Xet hinh chu nhat ABCD co BC//,=AD lai co M la trung diem AD => \(AM=\frac{1}{2}AD=\frac{1}{2}BC=KN\) (1)
ma \(\hept{\begin{cases}M\in AD\\AD//BC\\KN//BC\end{cases}\Rightarrow AM//KN}\) (2)
Tu (1) va (2) suy ra AMNK la hinh binh hanh
b) theo phan a ta co \(AK//MN\) (3)
co \(\hept{\begin{cases}KN//BC\left(cmt\right)\\BC\perp AB\left(ABCD.la.hinh.chu.nhat\right)\end{cases}=>KN\perp AB\left(quan.he.tu.vuong.goc.den.song.song\right)}\)
Xet \(\Delta ABN\) co \(\hept{\begin{cases}BH\perp AN\left(gt\right)\\KN\perp AB\left(cmt\right)\end{cases}\Rightarrow K.la.truc}.tam.\Delta ABN\)
Suy ra \(AK\perp BN\) (3)
Tu (3) va (4) ta co \(MN\perp BN\) DPCM
Chuc ban hoc tot
a: Xét ΔIDC vuông tại I và ΔKDB vuông tại K có
góc IDC chung
=>ΔIDC đồng dạng với ΔKDB
b: Xét ΔBHA vuông tại H và ΔBKC vuông tại K co
góc BAH=góc BCK
=>ΔBHA đồng dạng với ΔBKC
=>BH/BK=BA/BC
=>BK*BA=BH*BC
Đề sai rồi bạn
Đề vậy á.chứ mình không biết sai ở đâu