Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(Q\left(1\right)=5-5+a^2-a=0\Leftrightarrow a\left(a-1\right)=0\Leftrightarrow\left[{}\begin{matrix}a=0\\a=1\end{matrix}\right.\)
Chứng minh đa thức P(x) = 2(x-3)^2 + 5 không có nghiệm nha mấy chế
Tui viết sai đề :v
a) Ta có no của đa thức f(x) = 0
\(\Leftrightarrow\frac{3}{2}x-\frac{1}{4}=0\)
\(\Leftrightarrow\frac{3}{2}x=\frac{1}{4}\)
\(\Leftrightarrow x=\frac{1}{6}\)
Vậy no của đa thức f(x)=0 \(\Leftrightarrow x=\frac{1}{6}\)
b) Ta có no của đa thức g(x) = 0
\(\Leftrightarrow2x^2-x=0\)
\(\Leftrightarrow x.\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\2x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)
Vậy no của đa thức g(x) = 0 \(\Leftrightarrow x\in\left\{0;\frac{1}{2}\right\}\)
a. Ta có: 5a +b +2c =0 => b = -5a -2c
=>Q(2).Q(-1) = (4a +2b +c)(a -b +c) = (4a -10a -4c +c)(a +5a + 2c +c)
= (-6a - 3c)(6a +3c) = - (6a +3c)^2 <= 0 với mọi a,c => Q(2).Q(-1),<_0 với 5a+b+2c=0.
b. Q(x) = 0 với mọi x nên:
Q(0) =0 => c =0 (1)
Q(1) = a+b =0 (2)
Q(-1) = a-b =0 (3)
Từ (2) và (3) => a =b =0 kết hợp với (1) suy ra a =b= c =0.
a) f(x) = x(x - 5) + 2(x - 5)
x(x - 5) + 2(x - 5) = 0
<=> (x - 5)(x - 2) = 0
x - 5 = 0 hoặc x - 2 = 0
x = 0 + 5 x = 0 + 2
x = 5 x = 2
=> x = 5 hoặc x = 2
a, f(x) có nghiệm
\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)
->tự kết luận.
b1, để g(x) có nghiệm thì:
\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)
\(\Rightarrow2x^2-4x-x^2+5+4x=0\)
\(\Rightarrow x^2+5=0\)
Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)
suy ra: k tồn tại \(x^2+5=0\)
Vậy:.....
b2,
\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)
\(=x^2-5x+2x-10\)
\(=x^2-3x-10\)
\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)
\(=x^2+5-x^2+3x-10=3x-5\)
Cho đa thức F(x) = 2ax^2 + bx (a,b là hằng số). Xác định a,b để đa thức F(x) có nghiệm x = -1 và F(1) = 4
Vì đa thức F(x) có nghiệm x = -1 nên F(-1) = 0
⇒ 2a - b = 0 ⇒ b = 2a
Vì F(1) = 4 ⇒ 2a + b = 4 ⇒ b = 4 - 2a(1)
Từ đây ta có 2a = 4 - 2a ⇒ 4a = 4 ⇒ a = 1
Thay a=1 vào (1)
=> b=4-2.1=4-2=2
Vậy a=1 vs b=2
cho đa thức P(x) = 2ax + a - 6. Tìm a để P(x) có nghiệm là :
a, tại x=1 , ta có:
2a+a-6=0=> a=6
b. Tại x=-5, ta có:
-10a+a-6=0
=> 9a=-6
=> a=-2/3
c. Tại x=-1/2, ta có:
-a+a-6=0 (Không thỏa ĐK)=> không tìm được a để PT có nghiệm x=-1/2
a) P(x) có nghiệm x=1
<=> 2.a.1 + a -6=0
<=>2a+a-6=0
<=>3a=6
<=>a=2
b)
P(x) có nghiệm x=-5
<=> 2.a.(-5) + a -6=0
<=>-10a+a-6=0
<=>-9a=6
<=>a= \(\frac{2}{-3}\)
c) P(x) có nghiệm x=\(\frac{-1}{2}\)
<=> 2.a.(\(\frac{-1}{2}\) )+ a -6=0
<=>-a+a-6=0
<=>0a=6
<=>a vô nghiệm
Chúc bạn học tốt ạ!