Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ABCD là hình chữ nhật
=>\(BD^2=BA^2+BC^2\)
=>\(BD^2=5^2+12^2=169\)
=>BD=13(cm)
b: Xét ΔADB vuông tại A có AH là đường cao
nên \(AH\cdot BD=AB\cdot AD\)
=>\(AH\cdot13=5\cdot12=60\)
=>\(AH=\dfrac{60}{13}\left(cm\right)\)
c: \(\widehat{HDK}+\widehat{HBC}=90^0\)(ΔBDC vuông tại C)
\(\widehat{HIB}+\widehat{HBI}=90^0\)(ΔHBI vuông tại H)
mà \(\widehat{HBC}=\widehat{HBI}\left(I\in BC\right)\)
nên \(\widehat{HDK}=\widehat{HIB}\)
Xét ΔHDK vuông tại H và ΔHIB vuông tại H có
\(\widehat{HDK}=\widehat{HIB}\)
Do đó: ΔHDK đồng dạng với ΔHIB
=>\(\dfrac{HD}{HI}=\dfrac{HK}{HB}\)
=>\(HD\cdot HB=HK\cdot HI\)(1)
Xét ΔABD vuông tại A có AH là đường cao
nên \(AH^2=HD\cdot HB\left(2\right)\)
Từ (1) và (2) suy ra \(AH^2=HK\cdot HI\)
a: \(AB=\sqrt{3\cdot15}=3\sqrt{5}\left(cm\right)\)
\(AC=\sqrt{12\cdot15}=6\sqrt{5}\left(cm\right)\)
b: \(\dfrac{HF}{HE}=\dfrac{AE}{AF}=\dfrac{AH^2}{AB}:\dfrac{AH^2}{AC}=\dfrac{AC}{AB}=2\)
=>HF=2HE
a,Vì ABCD là hình chữ nhật => BC = AD = 15 cm
Xét tam giác ABD vuông tại A, đường cao AH
Áp dụng định lí Pytago cho tam giác ABD
\(BD^2=AB^2+AD^2=64+225=289\Rightarrow BD=17\)cm
* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AD^2}\Rightarrow\frac{1}{AH^2}=\frac{1}{64}+\frac{1}{225}=\frac{225+64}{64.225}\)
\(\Leftrightarrow\frac{1}{AH^2}=\frac{289}{14400}\Leftrightarrow AH^2=\frac{14400}{289}\Leftrightarrow AH=\frac{120}{17}\)
b, Xét tam giác AHB vuông tại H đường cao HI
\(AH^2=IA.AB\)( hệ thức lượng ) (1)
Xét tam giác ABD vuông tại A đường cao AH
\(AH^2=DH.BH\)( hệ thức lượng ) (2)
Từ (1) ; (2) suy ra \(IA.AB=DH.BH\)( đpcm )