\(\frac{a}{b}=\frac{c}{d}\)....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2019

Ta có:

a/b =c/d

⟹a/c=b/d

Áp dụng tính chất dãy tỉ số bằng nhau ta có

a/c=b/d=5a+2b/5c+2b=5a-2b/5c-2d

Vì 5a=2b/5c=2d=5a-2b/5c-2d

⟹5a+2b/5a-2b=5c+2d/5c-2d

22 tháng 9 2019

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}.\)

\(\Rightarrow\frac{5a}{5c}=\frac{2b}{2d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{5a}{5c}=\frac{2b}{2d}=\frac{5a+2b}{5c+2d}\) (1)

\(\frac{5a}{5c}=\frac{2b}{2d}=\frac{5a-2b}{5c-2d}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{5a+2b}{5c+2d}=\frac{5a-2b}{5c-2d}\)

\(\Rightarrow\frac{5a+2b}{5a-2b}=\frac{5c+2d}{5c-2d}\left(đpcm\right).\)

Chúc bạn học tốt!

22 tháng 8 2019

Vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{5a}{5c}=\frac{2b}{2d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: 

\(\frac{5a}{5c}=\frac{2b}{2d}=\frac{5a+2b}{5c+2d}=\frac{5a-2b}{5c-2d}\)

                 \(\Rightarrow\frac{5a+2b}{5a-2b}=\frac{5c+2d}{5c-2d}\left(đpcm\right)\)

ta có:

\(\frac{5a+2b}{5a-2b}=\frac{5c+2d}{5c-2d}\Rightarrow\frac{5a+2b}{5c+2d}=\frac{5a-2b}{5c-2d}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{5a}{5c}=\frac{2b}{2d}=\frac{5a-2b}{5c-2d}=\frac{5a+2b}{5c+2d}\)(đpcm)

22 tháng 10 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{4a}{4c}=\frac{2b}{2d}=\frac{4a-2b}{4c-2d}=\frac{5a}{5c}=\frac{2b}{2d}=\frac{5a+2b}{5c+2d}\)

Suy ra \(\frac{4a-2b}{4c-2d}=\frac{5a+2b}{5c+2d}\)Suy ra điều phải chứng minh: \(\frac{4a-2b}{5a+2b}=\frac{4c-2d}{5c+2d}\)

21 tháng 10 2016

a) a/b=c/d =>a/b+1=c/d+1=>a+b/b=c+d/d

b)a/b=c/d=>a/c=b/d=(a+b)/(c+d)=(2a+2b)/(2c+2d)                 1

  a/c=b/d=(a-b)/(c-d)=(5a-5b)/(5c-5d)                                   2

Từ 1 và 2 ,ta có:

(2a+2b)/(2c+2d)=(5a-5b)/(5c-5d)

20 tháng 2 2017

Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{5a}{5c}=\frac{2b}{2d}=\frac{3a-2b}{3c-2d}=\frac{5a+2b}{5c+2d}\)

\(\Rightarrow\frac{3a-2b}{5a+2b}=\frac{3c-2d}{2c+2d}\) ( đpcm )

6 tháng 9 2020

a) \(\hept{\begin{cases}\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a-3b}{5c-3d}\\\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{3a}{3c}=\frac{2b}{2d}=\frac{3a+2b}{3c+2d}\end{cases}}\)

\(\Rightarrow\frac{5a-3b}{5c-3d}=\frac{3a+2b}{3c+2d}\)

\(\Rightarrow\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}\)

b) Chứng minh tương tự 

6 tháng 9 2020

ko biet nghen

25 tháng 8 2018

\(\frac{a}{b}=\frac{c}{d}=\frac{2a}{2b}=\frac{5a}{5b}=\frac{9c}{9d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{2a}{2b}=\frac{5a}{5b}=\frac{9c}{9d}=\frac{5a+9c}{5b+9d}\)

                                      đpcm

b) bạn xem lại đề nhé

25 tháng 8 2018

a, Theo tính chất dãy tỉ số bằng nhau ta có :

\(\hept{\begin{cases}\frac{a}{b}=\frac{c}{d}=\frac{2a}{2b}\\\frac{a}{b}=\frac{c}{d}=\frac{5a}{5b}=\frac{9c}{9d}=\frac{5a+9c}{5b+9d}\end{cases}}\)

\(\Rightarrow\frac{5a+9c}{5b+9d}=\frac{2a}{2b}\)     ( đpcm )

b, Sai đề nha là \(\frac{5a+3b}{5a-3b}\)

 Ta có : \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Theo tính chất dãy tỉ số bằng nhau ta có :

\(\hept{\begin{cases}\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}\\\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a-3b}{5c-3d}\end{cases}}\)

\(\Rightarrow\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)

\(\Rightarrow\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)

21 tháng 10 2015

\(\frac{a}{b}=\frac{c}{d}\)

=> \(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{2b}{2d}=\frac{3a-2b}{3c-2d}=\frac{3a+2b}{3c+2d}\)

=> \(\frac{3a-2b}{3c-2d}=\frac{3a+2b}{3c+2d}\)

=> \(\frac{3a-2b}{3a+2b}=\frac{3c-2d}{3c+2d}\) (Đpcm)