Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi\(ƯCLN\left(2n+3,n+1\right)=a\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮a\\n+1⋮a\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2n+3⋮a\\2n+2⋮a\end{cases}}\Rightarrow2n+3-\left(2n+2\right)⋮a\)\(\Rightarrow1⋮a\Rightarrow a=1\RightarrowƯCLN\left(2n+3,n+1\right)=1\left(đpcm\right)\)
câu 4: 1 câu 3 mình mới tìm ra đc chừng này thôi ! còn lại bạn tìm thêm nhé
:câu 6: 48 câu 3: {1;4;9;.....}
câu 7: 80
gọi d là ƯCLN(2n+3;n+1)
Ta có:n+1 chia hết cho d =>2n+2chia hết cho d(1)
2n+3 chia hết cho d(2)
Từ (1)(2)=>(2n+3)-(2n+2)chia hết cho d
hay 1 chia hết cho d
Vậy d=1=>2n+3 và n+1 là hai số nguyên tố cùng nhau(đpcm)