K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2021

| x1 - x2 | ≥ 2

=> ( x1 - x2 )2 ≥ 4

<=> x12 - 2x1x2 + x22 ≥ 4

<=> ( x1 + x2 )2 - 4x1x2 ≥ 4

<=> m2 + 2m + 1 - 4m ≥ 4

<=> m2 - 2m - 3 ≥ 0

<=> ( m + 1 )( m - 3 ) ≥ 0

đến đây dễ rồi 

Ta có : x2 - 2x - 3m2 = 0 

Tại m = 1 thì pt trở thành : 

x2 - 2x - 3.1= 0 

<=> x2 - 2x - 3 = 0 

<=> x2 - 3x + x - 3= 0 

<=> x(x - 3) + (x - 3) = 0 

<=> (x - 3)(x + 1) = 0 

<=> \(\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}}\)

a) Thay m=2 vào phương trình \(x^2+2\left(m-1\right)x-4m=0\), ta được:

\(x^2+2\cdot\left(2-1\right)x-4\cdot2=0\)

\(\Leftrightarrow x^2+2x-8=0\)(1)

\(\Delta=b^2-4ac=2^2-4\cdot1\cdot\left(-8\right)=4+32=36\)

Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-b-\sqrt{\Delta}}{2a}\\x_2=\dfrac{-b+\sqrt{\Delta}}{2a}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2-\sqrt{36}}{2\cdot1}=\dfrac{-2-6}{2}=-4\\x_2=\dfrac{-2+\sqrt{36}}{2\cdot1}=\dfrac{-2+6}{2}=2\end{matrix}\right.\)

Vậy: Khi m=2 thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) có hai nghiệm phân biệt là \(x_1=-4;x_2=2\)

b) Ta có: \(x^2+2\left(m-1\right)x-4m=0\)

\(\Delta=\left[2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-4\right)\)

\(\Leftrightarrow\Delta=\left(2m-2\right)^2+16>0\forall m\)

\(\forall m\) thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) luôn có hai nghiệm phân biệt là: 

\(\left\{{}\begin{matrix}x_1=\dfrac{-\left(2m-2\right)-\sqrt{\Delta}}{2}\\x_2=\dfrac{-\left(2m-2\right)+\sqrt{\Delta}}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2m+2-\sqrt{\left(2m-2\right)^2+16}}{2}\\x_2=\dfrac{-2m+2+\sqrt{\left(2m-2\right)^2+16}}{2}\end{matrix}\right.\)

Để x1 và x2 là hai số đối nhau thì \(x_1+x_2=0\)

\(\Leftrightarrow\dfrac{-2m+2-\sqrt{\left(2m-2\right)^2+16}}{2}+\dfrac{-2m+2+\sqrt{\left(2m-2\right)^2+16}}{2}=0\)

\(\Leftrightarrow-2m+2-2m+2=0\)

\(\Leftrightarrow-4m+4=0\)

\(\Leftrightarrow-4m=-4\)

hay m=1

Vậy: Khi m=1 thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) có hai nghiệm phân biệt x1 và x2 thỏa mãn x1 và x2 là hai số đối nhau

31 tháng 1 2021

a, Với m = 2 (1)<=>x^2+2x-8=0 rồi tính ra thôi

b, Để PT có 2 nghiệm PB thì 

Δ=[2(m−1)]^2−4⋅1⋅(−4)Δ=[2(m−1)]2−4⋅1⋅(−4)

⇔Δ=(2m−2)^2+16>0∀m

Vì x1 và x2 là 2 số đối nhau nên x1+x2=0 <=> -2(m-1) = 0 <=> m=1

Vậy để PT có 2 nghiệm pbiet đối nhau thì m = 1 

24 tháng 5 2021

sửa cho dễ nhìn :Cho dg thẳng (d):y=mx+10 và (P):y=\(x^2\).Tìm tất cả các giá trị của m để \(\left|x_1\right|>\left|x_2\right|\) với \(x_1< x_2\)

bài làm

Theo pt hoành độ hoành độ giao điểm của (d) và (P) ta có

\(x^2=mx+10\)

\(x^2-mx-10=0\)

\(\Delta=\left(-m\right)^2-4\cdot\left(-10\right)=m^2+40>0\)(với mọi m)

Theo định lí Vi-ét ta có

\(x_1+x_2=m\)

\(x_1x_2=10\)

Ta có \(\left|x_1\right|>\left|x_2\right|\)

\(\left(\sqrt{x_1}\right)^2>\left(\sqrt{x_2}\right)^2\)

\(\left(\sqrt{x_1}\right)^2-\left(\sqrt{x_2}\right)^2>0\)

\(\left(\sqrt{x_1}-\sqrt{x_2}\right)\left(\sqrt{x_1}+\sqrt{x_2}\right)>0\)

\(\left(\sqrt{x_1-2\sqrt{x_1x_2}+x_2}\right)\left(\sqrt{x_1+2\sqrt{x_1x_2}+x_2}\right)>0\)

\(\left(\sqrt{10-2m}\right)\left(\sqrt{10+2m}\right)>0\)

\(\sqrt{\left(10-2m\right)\left(10+2m\right)}>0\)

\(\left(10-2m\right)\left(10+2m\right)>0\)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}10-2m>0\\10+2m>0\end{matrix}\right.\\\left\{{}\begin{matrix}10-2m< 0\\10+2m< 0\end{matrix}\right.\end{matrix}\right.\)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}m< 5\\m>-5\end{matrix}\right.\\\left\{{}\begin{matrix}m>5\\m< -5\end{matrix}\right.\end{matrix}\right.\)

⇒-5<m<5

Vậy -5<m<5

 

 

 

 

AH
Akai Haruma
Giáo viên
24 tháng 5 2021

\(|x_1|>|x_2|\) thì tương đương với $x_1^2>x_2^2$ em nhé. 

Không có cơ sở để khẳng định $x_1,x_2$ dương để viết $\sqrt{x_1}, \sqrt{x_2}$