K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

b) Ta có: \(\dfrac{x-12}{77}+\dfrac{x-11}{78}=\dfrac{x-74}{15}+\dfrac{x-73}{16}\)

\(\Leftrightarrow\dfrac{x-12}{77}-1+\dfrac{x-11}{78}-1=\dfrac{x-74}{15}-1+\dfrac{x-73}{16}-1\)

\(\Leftrightarrow\dfrac{x-89}{77}+\dfrac{x-89}{78}-\dfrac{x-89}{15}-\dfrac{x-89}{16}=0\)

\(\Leftrightarrow\left(x-89\right)\left(\dfrac{1}{77}+\dfrac{1}{78}-\dfrac{1}{15}-\dfrac{1}{16}\right)=0\)

mà \(\dfrac{1}{77}+\dfrac{1}{78}-\dfrac{1}{15}-\dfrac{1}{16}\ne0\)

nên x-89=0

hay x=89

Vậy: S={89}

Bài 1:

a)ĐKXĐ: \(x\notin\left\{3;-1\right\}\)

Ta có: \(\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2x+2}=\dfrac{2x}{\left(x-3\right)\left(x+1\right)}\)

\(\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{4x}{2\left(x-3\right)\left(x+1\right)}\)

Suy ra: \(x^2+x+x^2-3x-4x=0\)

\(\Leftrightarrow x^2-6x=0\)

\(\Leftrightarrow x\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhân\right)\\x=6\left(nhận\right)\end{matrix}\right.\)

Vậy: S={0;6}

11 tháng 8 2023

\(Bài.1:\\ a,3x-9y=3\left(x-3y\right)\\ b,x^2-5x=x\left(x-5\right)\\ c,\left(x-3\right)\left(x-5\right)-\left(2x+1\right)\left(3-x\right)=\left(x-3\right)\left(x-5\right)+\left(x-3\right)\left(2x+1\right)\\ =\left(x-3\right)\left(x-5+2x+1\right)=\left(x-3\right)\left(3x-4\right)\\ d,3x^3+6x^2+3x=3x\left(x^2+2x+1\right)=3x\left(x+1\right)^2\\ e,3\left(x+5\right)-x^2-5x=3\left(x+5\right)-x\left(x+5\right)\\ =\left(x+5\right)\left(3-x\right)\)

11 tháng 8 2023

\(Bài.2:\\ a,x^3-9x=0\\ \Leftrightarrow x.\left(x^2-9\right)=0\\ \Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=3\end{matrix}\right.\\ b,5x\left(x+2\right)-3\left(x+2\right)=0\\ \Leftrightarrow\left(5x-3\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}5x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=-2\end{matrix}\right.\\ c,x^2-7x=0\\ \Leftrightarrow x\left(x-7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)

25 tháng 10 2021

s khó v?

Câu 106: 

a: Xét ΔABC có 

P là trung điểm của AB

N là trung điểm của AC

Do đó: PN là đường trung bình của ΔABC

Suy ra: PN//BC

hay PN//HM; QN//HM

Xét tứ giác QNMH có QN//HM

nên QNMH là hình thang

mà \(\widehat{QHM}=90^0\)

nên QNMH là hình thang vuông

b: Ta có: ΔAHC vuông tại H

mà HN là đường trung tuyến ứng với cạnh huyền AC

nên \(HN=\dfrac{AC}{2}\left(1\right)\)

Xét ΔABC có

M là trung điểm của BC

P là trung điểm của AB

Do đó: MP là đường trung bình của ΔABC

Suy ra: MP//AC và \(MP=\dfrac{AC}{2}\left(2\right)\)

Từ (1) và (2) suy ra MP=HN

Xét tứ giác MNPH có PN//HM

nên MNPH là hình thang

mà MP=HN

nên MNPH là hình thang cân

8 tháng 9 2021

bạn đinhr thực sự hâm mộ bạn luôn á cam rơn nhìu nha mong bn sẽ luôn giúp đỡ mik :)

26 tháng 9 2018

dễ mak

26 tháng 9 2018

Bài 1 :

1) a2 - 4 + y ( a - 2 )

= ( a + 2 ) ( a - 2 ) + y ( a - 2 )

= ( a - 2 ) ( a + 2 + y )

2) ( x - 2 )2 - 9y2

= ( x - 2 - 3y ) ( x - 2 + 3y )

Bài 2 :

1) 3 ( x + 4 ) - 2x = 5

=> 3x + 12 - 2x = 5

=> x + 12 = 5

=> x = 5 - 12 = - 7

Vậy x = - 7

2) x ( x - 2 ) - x2 - 6 = 0

=> x2 - 2x - x2 - 6 = 0

=> - 2x - 6 = 0

=> 2x = - 6

=> x = \(-\frac{6}{2}=3\)

Vậy x = 3

3 ) x2 - 3x = 0

=> x ( x - 3 ) = 0

=> \(\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

Vậy \(x\in\left\{0;3\right\}\)

4) 5 - 3 ( x - 6 ) = 4

=> 5 - 3x + 18 = 4

=> 3x = 5 + 18 - 4

=> 3x = 19

=> x = \(\frac{19}{3}\)

Vậy \(x=\frac{19}{3}\)

20 tháng 3 2020

1. 

Ta có: \(\frac{2a+3b+3c+1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2ac-1}{2017+c}\)

\(=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)

Đặt \(\hept{\begin{cases}2015+a=x\\2016+b=y\\2017+c=z\end{cases}}\)

\(P=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)

\(=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}=\frac{y}{x}+\frac{z}{x}+\frac{z}{y}+\frac{x}{y}+\frac{x}{z}+\frac{y}{z}\)

\(\ge2\sqrt{\frac{y}{x}\cdot\frac{x}{y}}+2\sqrt{\frac{z}{x}\cdot\frac{x}{z}}+2\sqrt{\frac{y}{z}\cdot\frac{z}{y}}\left(Cosi\right)\)

Dấu "=" <=> x=y=z => \(\hept{\begin{cases}a=673\\b=672\\c=671\end{cases}}\)

Vậy Min P=6 khi a=673; b=672; c=671

13 tháng 1 2019

Câu 1 thử cộng 3 vào P xem 

Rồi áp dụng BDT Cauchy - Schwars : a^2/x + b^2/y + c^2/z ≥(a + b + c)^2/(x + y + z)

Bài 3: 

a: \(x^3-x=x\left(x-1\right)\left(x+1\right)\)

b: \(x^3-4xy^2=x\left(x^2-4y^2\right)=x\left(x-2y\right)\left(x+2y\right)\)

c: \(25-4x^2=\left(5-2x\right)\left(5+2x\right)\)

d: \(x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\)

e: \(4x^2y-y=y\left(4x^2-1\right)=y\left(2x-1\right)\left(2x+1\right)\)

f: \(9-\left(x+y\right)^2=\left(3-x-y\right)\left(3+x+y\right)\)