Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Gọi x là năng suất dự tính của xí nghiệp (sản phẩm/ngày); (x ∈ N*) .
⇒ Số thảm len dệt được theo dự tính là: 20x (thảm).
Sau khi cải tiến, năng suất của xí nghiệp đã tăng 20% nên năng suất trên thực tế là:
x + 20%.x = x + 0,2x = 1,2x (sản phẩm/ngày)
Sau 18 ngày, xí nghiệp dệt được:
18.1,2x = 21,6.x (thảm).
Vì sau 18 ngày, xí nghiệp không những hoàn thành số thảm cần dệt mà còn dệt thêm được 24 tấm nên ta có phương trình:
21,6.x = 20x + 24
⇔ 21,6x – 20x = 24
⇔ 1,6x = 24
⇔ x = 15 (thỏa mãn)
Vậy số thảm mà xí nghiệp phải dệt ban đầu là: 20.15 = 300 (thảm).
Lời giải:
Vì $x=9$ nên $x-9=0$
Ta có:
$F=(x^{2017}-9x^{2016})-(x^{2016}-9x^{2015})+(x^{2015}-9x^{2014})-....-(x^2-9x)+x-10$
$=x^{2016}(x-9)-x^{2015}(x-9)+x^{2014}(x-9)-....-x(x-9)+x-10$
$=x^{2016}.0-x^{2015}.0+x^{2014}.0-...-x.0+x-10$
$=x-10=9-10=-1$
a, 4\(x^3\).y + \(\dfrac{1}{2}\)yz
=y.(4\(x^3\) + \(\dfrac{1}{2}\)z)
b, (a2 + b2 - 5)2 - 2.(ab + 2)2
= [a2 + b2 - 5 - \(\sqrt{2}\)(ab + 2) ].[ a2 + b2 - 5 + \(\sqrt{2}\)(ab +2)]
a) \(4x^3y+\dfrac{1}{2}yz=y\left(4x^3+\dfrac{1}{2}z\right)\)
b) \(\left(a^2+b^2-5\right)^2-2.\left(ab+2\right)^2\)
\(=\left[\left(a^2+b^2-5\right)+2\left(ab+2\right)\right]\left[\left(a^2+b^2-5\right)-2\left(ab+2\right)\right]\)
\(=\left[a^2+b^2-5+2ab+4\right]\left[a^2+b^2-5-2ab-4\right]\)
\(=\left[a^2+b^2+2ab-1\right]\left[a^2+b^2-2ab-9\right]\)
\(=\left[\left(a+b\right)^2-1\right]\left[\left(a-b\right)^2-9\right]\)
\(=\left[\left(a+b+1\right)\left(a+b-1\right)\right]\left[\left(a-b+3\right)\left(a-b-3\right)\right]\)
Lời giải:
$4x-6=2x+4$
$\Leftrightarrow (4x-6)-(2x+4)=0$
$\Leftrightarrow 2x-10=0$
$\Leftrightarrow 2x=10$
$\Leftrightarrow x=5$
Bài 3 :
\(BC=HC+HB=16+9=25\left(cm\right)\)
\(BC^2=AB^2+AC^2\Rightarrow AB^2=BC^2-AC^2=25^2-20^2=625-400=225=15^2\)
\(\Rightarrow AB=15\left(cm\right)\)
\(AH^2=HC.HB=16.9=4^2.3^2\Rightarrow AH=3.4=12\left(cm\right)\)
Bài 6:
\(AB=AC=4\left(cm\right)\) (Δ ABC cân tại A)
\(BH=HC=2\left(cm\right)\) (Ah là đường cao, đường trung tuyến cân Δ ABC)
\(BC=BH+HC=2+2=4\left(cm\right)\)
Chu vi Δ ABC :
\(4+4+4=12\left(cm\right)\)
\(x^2-6x+10\)
\(=x^2-2.x.3+9+1\)
\(=\left(x-3\right)^2+1>0\)
\(4x^2-20x+27\)
\(=\left(2x\right)^2-2.2x.5+25+2\)
\(=\left(2x-5\right)^2+2>0\)
\(x^2+x+1\)
\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
học tốt
a) A=x2 _ 6x + 10
<=> A=x2-6x+9+1
<=> A=(x-3)2+1 luôn dương với mọi x
b) B=4x2 _ 20x + 27
<=> 4x2-20x +25+2
<=> (2x-5)2+2 luôn dương với mọi x
c) C=x2 + x +1
<=> x2+2.x 1/2 + 1/4 +3/4
<=> (x+1/2)2+3/4 luôn dương với mọi x
\(8x^3+12x^2y+6xy^2+y^3-z^3\)
\(=\left(2x+y\right)^3-z^3\)
\(=\left(2x+y-z\right)\left[4x^2+z\left(2x+y\right)+z^2\right]\)
a, 8a3 - 36a2 +54ab2 - 27b3
=(8a3-36a2b +54ab2 - 27b3)
=(2a-3b)2
=(2a-3b)(2a-3b)(2a-3b)
b, 8x3 + 12x2y + 6xy2 + y3 - z 3
=(8x3 + 12x2y + 6xy2 + y3) - z3
=(2x + y)3 - y3
=(2x + y +z) . [ (2x + Y)2 + 2(2x + y)+ z2
= (2x + y + z)(4x2 + 4xy + y2 + 4x + 2y + z2
Bài 2: Tìm GTNN :
A= x^2 -2x -4 = x^2 - 2x + 1-1 -4 = (x-1)^2 - 5
A >/ -5
MinA = -5
B= x^2 -x +5= x^2 - x + 1/4 - 1/4 +5 = (x-1/2)^2 + 19/4
B >/ 19/4
MinB = 19/4
C= 4x^2 +2x -9= (2x)^2 + 2x + 1/4 - 1/4 -9 = (2x+1/2)^2 - 37/4
C >/ -37/4
MinC= -37/4
\(D=2x^2-4x+7=\left(\sqrt{2}x\right)^2-2\cdot\sqrt{2}x\cdot\sqrt{2}+2-2+7=\left(\sqrt{2}x-\sqrt{2}\right)^2+5\)
D >/ 5
MinD = 5
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
tôi mong các bn ko làm như vậy
8)
a) \(A=1-\dfrac{x}{1-\dfrac{x}{x+1}}\left(x\ne-1\right)\)
\(=1-\dfrac{x}{\dfrac{x+1-x}{x+1}}=1-\dfrac{x}{\dfrac{1}{x+1}}=1-x\left(x+1\right)=-x^2-x+1\)
b) \(B=\dfrac{\dfrac{x}{y}+\dfrac{y}{x}}{\dfrac{x-y}{x+y}+\dfrac{x+y}{x-y}}=\dfrac{\dfrac{x^2}{xy}+\dfrac{y^2}{xy}}{\dfrac{\left(x-y\right)^2+\left(x+y\right)^2}{\left(x+y\right)\left(x-y\right)}}\left(x\ne\pm y;x\ne0;y\ne0\right)\)
\(=\dfrac{\dfrac{x^2+y^2}{xy}}{\dfrac{x^2-2xy+y^2+x^2+2xy+y^2}{\left(x+y\right)\left(x-y\right)}}=\dfrac{\dfrac{x^2+y^2}{xy}}{\dfrac{2\left(x^2+y^2\right)}{x^2-y^2}}\)
\(=\dfrac{x^2+y^2}{xy}\cdot\dfrac{x^2-y^2}{2\left(x^2+y^2\right)}=\dfrac{x^2-y^2}{2xy}\)
10:
a: Thời gian dự định là \(\dfrac{60}{x}\left(giờ\right)\)
b: Thời gian đi nửa quãng đường đầu tiên là: \(\dfrac{60}{2}:\left(x+10\right)=\dfrac{30}{x+10}\left(giờ\right)\)
Thời gian đi nửa quãng đường còn lại là:
\(\dfrac{60-30}{x-6}=\dfrac{30}{x-6}\left(giờ\right)\)
c: Ô tô đến B đúng giờ nên ta có: \(\dfrac{30}{x+10}+\dfrac{30}{x-6}=\dfrac{60}{x}\)
=>\(\dfrac{1}{x+10}+\dfrac{1}{x-6}=\dfrac{2}{x}\)
=>\(\dfrac{x-6+x+10}{\left(x+10\right)\left(x-6\right)}=\dfrac{2}{x}\)
=>\(\dfrac{2x+4}{\left(x+10\right)\left(x-6\right)}=\dfrac{2}{x}\)
=>\(\dfrac{x+2}{x^2+4x-60}=\dfrac{1}{x}\)
=>\(x\left(x+2\right)=x^2+4x-60\)
=>\(x^2+2x=x^2+4x-60\)
=>-2x=-60
=>x=30
Vậy: Vận tốc dự định của ô tô là 30km/h
Bài 6:
a: \(A=\dfrac{x-1}{x}-\dfrac{x+1}{x^2-x}+\dfrac{3\left(x-1\right)}{x^2-2x+1}\)
\(=\dfrac{x-1}{x}-\dfrac{x+1}{x\left(x-1\right)}+\dfrac{3}{x-1}\)
\(=\dfrac{\left(x-1\right)\left(x-1\right)-x-1+3x}{\left(x-1\right)\cdot x}\)
\(=\dfrac{x^2-2x+1+2x-1}{x\left(x-1\right)}=\dfrac{x^2}{x\left(x-1\right)}=\dfrac{x}{x-1}\)
b: \(B=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\)
\(=\dfrac{\left(x+y\right)^2-\left(x-y\right)^2+4y^2}{2\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x-y\right)\left(x+y\right)}=\dfrac{4y^2+4xy}{2\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{2y\left(x+y\right)}{2\left(x-y\right)\left(x+y\right)}=\dfrac{y}{x-y}\)