Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEDF có
AE//DF
AF//DE
Do đó: AEDF là hình bình hành
Hình bình hành AEDF có AD là phân giác của góc EAF
nên AEDF là hình thoi
b: Xét ΔBAC có AD là phân giác
nên \(\dfrac{AB}{AC}=\dfrac{BD}{DC}\left(1\right)\)
Xét ΔBAC có DF//AC
nên \(\dfrac{BD}{DC}=\dfrac{BF}{FA}\left(2\right)\)
Từ (1),(2) suy ra \(\dfrac{AB}{AC}=\dfrac{BF}{FA}\)
=>\(AB\cdot AF=BF\cdot AC\)
14: \(=\dfrac{4x+7+1}{\left(x+2\right)\left(4x+7\right)}=\dfrac{4}{4x+7}\)
14:
a: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có
góc N chung
=>ΔHNM đồng dạng với ΔMNP
b: NP=căn 3^2+4^2=5cm
MH=3*4/5=2,4cm
NH=3^2/5=1,8cm
13:
a: 3x+5=x-5
=>2x=-10
=>x=-5
b: (x-2)(2x+5)=0
=>x-2=0 hoặc 2x+5=0
=>x=2 hoặc x=-5/2
c: =>2(5x-2)=3(3x+1)
=>10x-4=9x+3
=>x=7
d: =>(3x+6-x+1)/(x+2)(x-1)=17-3x/(x+2)(x-1)
=>2x+7=17-3x
=>5x=10
=>x=2
a: Xét tứ giác ABCM có
AB//CM
AB=CM
Do đó: ABCM là hình bình hàn
Suy ra: AM//BC
Những câu dạng như 19 hoặc 20 thì em nên sử dụng phương pháp trắc nghiệm chứ ko nên giải tự luận (vì như thế quá tồn thời gian, 1 bài kiểm tra trắc nghiệm ko đủ thời gian cho phép làm điều đó)
Câu 19 thử A, C đều sai, B cũng sai do ko phù hợp ĐKXĐ, do đó D đúng
Câu 20 tương tự, thử với \(x=-1\) thỏa mãn, \(x=3;x=4\) đều ko thỏa mãn, vậy A đúng
21A
22B
23A
24A
25C
26A
27C
28A
a) ∆ABC vuông tại A
⇒ BC² = AC² + AB² (Pytago)
= 10² + 5²
= 125
⇒ BC = 55 (cm)
AM là đường trung tuyến ứng với cạnh huyền BC
⇒ AM = BC : 2 = 5√5/2 (cm)
b) ∆ABC vuông tại A
⇒ BC² = AB² + AC² (Pytago)
= 24² + 7²
= 625
⇒ BC = 25 (cm)
AM là đường trung tuyến ứng với cạnh huyền BC
⇒ AM = BC : 2 = 25/2 (cm)
c) ∆ABC vuông tại A
⇒ BC² = AB² + AC² (Pytago)
= 4² + 3²
= 25
⇒ BC = 5 (cm)
AM là đường trung tuyến ứng với cạnh huyền BC
⇒ AM = BC : 2 = 5/2 (cm)
\(4x^4+1\)
\(=4x^4+4x^2+1-4x^2\)
\(=\left(2x^2+1\right)^2-\left(2x\right)^2\)
\(=\left(2x^2+1+2x\right)\left(2x^2+1-2x\right)\)
\(4x^4+1=4x^4+4x^2+1-4x^2=\left(2x^2+1\right)^2-\left(2x\right)^2\)
\(=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)
a: \(\dfrac{2}{x+5}=\dfrac{2\cdot4\cdot\left(x-5\right)}{4\left(x-5\right)\left(x+5\right)}=\dfrac{8\left(x-5\right)}{4\left(x-5\right)\left(x+5\right)}\)
\(\dfrac{-3}{4x-20}=\dfrac{-3}{4\left(x-5\right)}=\dfrac{-3\left(x+5\right)}{4\left(x-5\right)\left(x+5\right)}=\dfrac{-3x-15}{4\left(x-5\right)\left(x+5\right)}\)
\(\dfrac{-x+2}{x^2-25}=\dfrac{-x+2}{\left(x-5\right)\left(x+5\right)}=\dfrac{4\left(-x+2\right)}{4\left(x-5\right)\left(x+5\right)}=\dfrac{-4x+8}{4\left(x-5\right)\left(x+5\right)}\)
b: \(\dfrac{1}{3x-6y}=\dfrac{1}{3\left(x-2y\right)}=\dfrac{\left(x-2y\right)\left(x+2y\right)}{3\left(x-2y\right)^2\cdot\left(x+2y\right)}\)
\(\dfrac{-x}{x^2-4y^2}=\dfrac{-x}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\dfrac{-x\cdot3\cdot\left(x-2y\right)}{3\left(x-2y\right)^2\cdot\left(x+2y\right)}\)
\(\dfrac{-2y^2}{x^2-4xy+4y^2}=\dfrac{-2y^2}{\left(x-2y\right)^2}=\dfrac{-2y^2\cdot3\left(x+2y\right)}{3\left(x+2y\right)\left(x-2y\right)^2}\)
\(=\dfrac{-6y^2\left(x+2y\right)}{3\left(x+2y\right)\left(x-2y\right)^2}\)