K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

Max:

\(M=\frac{x^2+xy+y^2}{x^2+y^2}=1+\frac{xy}{x^2+y^2}\le1+\frac{xy}{2\left|xy\right|}\le1+\frac{xy}{2xy}=1+\frac{1}{2}=\frac{3}{2}\)

Dấu "=" xảy ra tại x=y

8 tháng 11 2016

1) M = \(x^2+y^2-xy-x+y+1\)=\(x\left(x-y\right)-\left(x-y\right)+\left(y^2-1\right)\)=\(\left(x-1\right)\left(x-y\right)+\left(y^2-1\right)\)

Vậy Mmin =\(\left(y^2+1\right)\)khi \(x-1=0\)hoặc \(x-y=0\)

                                        =>     \(x=1\)            =>\(x=y\)

Mình chỉ có thể giúp bạn câu 1 thôi

                                                                                                                                                                                                   

19 tháng 5 2018

C=(x^2+xy+y^2=(x+y)^2/2+(x^2+y^2)≥}>0moi x,y

..

3B=(3x^2-3xy+3y^2)/C

3B=[2(x^2-2xy+y^2)-(x^2+xy+y^2)]/C=2(x-y)^2/C-1

3B≥-1=>B≥-1/3

khi x=y

B=[3(x^2+xy+y^2)-2(x^2+2xy+y^2)]/C

=3-2(x+y)^2/C≤3

B≤3

khi x=-y

28 tháng 7 2021

Đặt A = -x2 - y2 + xy + 2x + 2y

=> 4A = -4x2 - 4y2 + 4xy + 8x + 8y

         = -(4x2 - 4xy + y2) + 4(2x - y) - 4 - 3y2 + 12y - 12 + 16 

         = -(2x - y)2 + 4(2x - y) - 4 - 3(y2 - 4y + 4) + 16

         = -(2x - y - 2)2 - 3(y - 2)2 + 4 \(\le16\)

=> A \(\le4\)

=> Max A = 4

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-y-2=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=2\end{cases}}\)

Vậy Max A = 4 <=> x = y = 2