Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = (x^2 + 2x) - 2024
= (x^2 + 2x + 1) - 1 - 2024
= (x + 1)^2 - 2025
Với mọi giá trị của x, (x + 1)^2 luôn lớn hơn hoặc bằng 0. Do đó, giá trị nhỏ nhất của P là khi (x + 1)^2 đạt giá trị nhỏ nhất, tức là bằng 0.
Khi (x + 1)^2 = 0, ta có x + 1 = 0, từ đó suy ra x = -1.
Vậy, giá trị nhỏ nhất của biểu thức P là P = (-1 + 1)^2 - 2025 = -2025.
\(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}=\frac{x^2+2x}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}=\)
\(=\frac{x\left(x^2+2x\right)+2\left(x+5\right)\left(x-5\right)+50-5x}{2x\left(x+5\right)}=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=\)
\(=\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x\left(x^2-1+4\left(x-1\right)\right)}{2x\left(x+5\right)}=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}\)
a/ Để biểu thức xác đinh => 2x(x+5) khác 0 => x khác 0 và x khác -5
b/ Gọi biểu thức là A. Rút gọn A ta được:
\(A=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}=\frac{x-1}{2}\left(x\ne0;x\ne-5\right)\)
A=1 => x-1=2 => x=3
c/ A=-1/2 <=> x-1=-1 => x=0
d/ A=-3 <=> x-1=-6 => x=-5
Bài 1
Ta có : \(\frac{2x+2}{x^2-1}=0\)ĐK : \(x\ne\pm1\)
\(\Leftrightarrow2x+2=0\Leftrightarrow x=-1\)( ktm )
Bài 2 :
Ta có : \(\frac{2x+3}{-x+5}=\frac{3}{4}\)ĐK : \(x\ne5\)
\(\Leftrightarrow8x+12=-3x+15\Leftrightarrow11x=3\Leftrightarrow x=\frac{3}{11}\)
Vậy phương trình có tập nghiệm là S = { 3/11 }
Bài 1 : A=\(-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}\right)\)
A=\(-\left(x-\frac{1}{2}\right)^2-\frac{1}{4}< \)hoặc bằng -1/4 Vậy A max =1/4 khi x=1/2
C=x2-2x-5
=x2-5x+3x-15+10
=x(x-5)+3(x-5)+10
=(x+3)(x-5)+10<=10
DBXRK x=5
. Mấy cái này dễ mà bạn
. 1) Ta có \(\left|2x+1\right|-3\left(x+5\right)=8\) (1)
. Nếu \(x\ge-\frac{1}{2}\) , pt (1) <=> \(2x+1-3x-15=8\) (Giải pt, ra kết quả của x, bạn đối chiếu với đk \(x\ge-\frac{1}{2}\) )
. Nếu \(x<-\frac{1}{2}\) , pt (1) <=> \(-2x-1-3x-15=8\) , bạn làm như trên
. Bài 2 tương tự bài 1
. 3) Ta có: \(a^2+b^2+c^2\ge ab+bc+ca\)
. \(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\). Bạn nhóm hạng tử, sử dụng HĐT
. Được: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(BĐT đúng)
. => đpcm