Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính A=1+1/2+1/3+1/4+...+1/2^100-1 rồi so sánh với 100
Làm ơn làm ơn giúp mk T_T ...
Nhanh mk tick cho
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}<\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=2.\frac{1}{2}+2.\frac{1}{4}+3.\frac{1}{6}=2\)
Bài 1:
\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)
Bài 2:
\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)
Bài 1 :
\(2^{49}=\left(2^7\right)^7=128^7\)
\(5^{21}=\left(5^3\right)^7=125^7\)
mà \(125^7< 128^7\)
\(\Rightarrow2^{49}>5^{21}\)
Bài 2 :
a) \(S=1+3+3^2+3^3+...3^{99}\)
\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)
\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)
\(\Rightarrow dpcm\)
b) \(S=1+4+4^2+4^3+...4^{62}\)
\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)
\(\Rightarrow S=21+4^3.21+...4^{60}.21\)
\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)
\(\Rightarrow dpcm\)
a) \(32^{50}\)và \(27^{51}\)
\(32^{50}=\left(32^2\right)^{25}=1024^{25}\)
\(27^{51}=\left(27^2\right)^{25}.27=729^{25}.27\)
Vì \(1024>729\)nên \(1024^{25}>729^{25}.27\)hay \(32^{50}>27^{51}\)
b) \(31^9\)và \(9^{16}\)
\(31^9=\left(91^3\right)^2=273^2\)
\(9^{16}=\left(9^2\right)^4=81^4=\left(81^2\right)^2=6561^2\)
Vì \(6561>273\)nên \(273^2< 6561^2\)hay \(31^9< 9^{16}\).
Lời giải:
$A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}$
$\Rightarrow 2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}$
$\Rightarrow A=2A-A=1-\frac{1}{32}< 1-\frac{1}{2004}$
Hay $A< \frac{2003}{2004}$
Hay $A< B$
1/3+1/4+...+1/32 > 2 chắc 100%