Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{100}\right)\)
= \(\left(\frac{2}{2}-\frac{1}{2}\right).\left(\frac{3}{3}-\frac{1}{3}\right).\left(\frac{4}{4}-\frac{1}{4}\right).....\left(\frac{100}{100}-\frac{1}{100}\right)\)
= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{99}{100}\)
= \(\frac{1.2.3.....99}{2.3.4.....100}\)
= \(\frac{1.1.1.....1}{1.1.1.....100}\)
= \(\frac{1}{100}\)
~ Triệt tiêu trên tử dưới mẫu là được ~
# Chúc bạn học tốt #
cảm ơn bạn THẦN CHẾT nha!!!!!!!!
có bài nào khó thì bạn giải giúp mk nhé
nhận xét :
\(\frac{1}{2^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{3^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
.............
\(\frac{1}{100^2}=\frac{1}{100.101}=\frac{1}{100}-\frac{1}{101}\)
vậy
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{101}=\frac{9}{202}< \frac{3}{4}\)
Ta có: \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};.....;\frac{1}{100^2}< \frac{1}{99.100}\)
=>\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
=>\(S< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
=>\(S< \frac{1}{4}+\frac{1}{2}-\frac{1}{100}=\frac{3}{4}-\frac{1}{100}< \frac{3}{4}\)
=>S<3/4(đpcm)
Nhan xet:
\(\frac{1}{2^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{3^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
\(\frac{1}{4^2}< \frac{1}{4.5}=\frac{1}{4}-\frac{1}{5}\)
....
\(\frac{1}{100^2}< \frac{1}{100.101}=\frac{1}{100}-\frac{1}{101}\)
Vay:
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{101}=\frac{99}{202}< \frac{3}{4}\)
Ta có :
\(S=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}>\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}=9.\frac{1}{10}=\frac{9}{10}\) ( vì 9 số \(\frac{1}{10}\) )
\(\Rightarrow\)\(S>\frac{9}{10}\)
Vậy \(S>\frac{9}{10}\)
Chúc bạn học tốt ~
Ta có:S= 1/2+1/3+1/4+...+1/10>1/10+1/10+..+1/10(9 số 10)
=> S> 9/10
mk nghĩ là vậy
S=(1/100 - 1/2) : 1 + 1= 0.51
=> S<1