Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(Q\left(x\right)=\left|x-2017\right|+\left|x-2018\right|+\left|x-2019\right|\)
\(Q\left(x\right)=\left|x-2018\right|+\left(\left|x-2017\right|+\left|x-2019\right|\right)\)
\(Q\left(x\right)=\left|x-2018\right|+\left(\left|x-2017\right|+\left|2019-x\right|\right)\)
Áp dụng bất đẳng thức giá trị tuyệt đối \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) dấu "=" xảy ra khi \(ab\ge0\) ta có :
\(\left|x-2017\right|+\left|2019-x\right|\ge\left|x-2017+2019-x\right|=\left|2\right|=2\)
Dấu "=" xảy ra khi \(\left(x-2017\right)\left(2019-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-2017\ge0\\2019-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2017\\x\le2019\end{cases}}}\)
\(\Rightarrow\)\(2017\le x\le2019\)
Trường hợp 2 :
\(\hept{\begin{cases}x-2017\le0\\2019-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2017\\x\ge2019\end{cases}}}\) ( loại )
Suy ra : \(Q\left(x\right)=\left|x-2018\right|+2\ge2\)
Dấu "=" xảy ra khi \(\left|x-2018\right|=0\)
\(\Leftrightarrow\)\(x-2018=0\)
\(\Leftrightarrow\)\(x=2018\) ( thoã mãn \(2017\le x\le2019\) )
Vậy giá trị nhỏi nhất của \(Q\left(x\right)=2\) khi \(x=2018\)
Chúc bạn học tốt ~
Ta có : \(\frac{2016}{2017}< \frac{2017}{2017}=1\)
\(\frac{2017}{2018}< \frac{2018}{2018}=1\)
\(\frac{2018}{2019}< \frac{2019}{2019}=1\)
Nên : \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}< 1+1+1=3\)
\(\frac{2016}{2017}< 1\)
\(\frac{2017}{2018}< 1\)
\(\frac{2018}{2019}< 1\)
=> \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}< 1+1+1=3\)
\(A=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{1}{2018}\)
\(A=1+\left(1+\frac{2017}{2}\right)+\left(1+\frac{2016}{3}\right)+...+\left(1+\frac{1}{2018}\right)\)
\(A=\frac{2019}{2019}+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2018}\)
\(A=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)\)
Ta có: \(\frac{A}{B}=\frac{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}=2019\)
Để A có giá trị nhỏ nhất thì A = 1 ; 0
=> x thuộc ( 2018 hoặc 2017)
\(A=\left(x-2017\right)^{2018}+2019\)
Ta có: \(\left(x-2017\right)^{2018}\ge0\forall x\)
\(\Rightarrow\left(x-2017\right)^{2018}+2019\ge2019\forall x\)
\(A=2019\Leftrightarrow\left(x-2017\right)^{2018}=0\Leftrightarrow x-2017=0\Leftrightarrow x=2017\)
\(A_{min}=2019\Leftrightarrow x=2017\)
\(\dfrac{x+5}{2017}+\dfrac{x+4}{2018}+\dfrac{x+3}{2019}=-3\\ \dfrac{x+5}{2017}+1+\dfrac{x+4}{2018}+1+\dfrac{x+3}{2019}=-3+3\\ \dfrac{x+5}{2017}+\dfrac{2017}{2017}+\dfrac{x+4}{2018}+\dfrac{2018}{2018}+\dfrac{x+3}{2019}+\dfrac{2019}{2019}=0\\ \dfrac{x+2022}{2017}+\dfrac{x+2022}{2018}+\dfrac{x+2022}{2019}=0\\ x+2022.\left(\dfrac{1}{2017}+\dfrac{1}{2018}+\dfrac{1}{2019}\right)=0\)
⇒x+2022=0 (vì \(\dfrac{1}{2017}+\dfrac{1}{2018}+\dfrac{1}{2019}\)\(\ne0\))
⇒x=0-2022
⇒x=-2022
Ta có:
\(C=\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2017}=1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{2}{2017}=3+\left(\frac{2}{2017}-\frac{1}{2018}-\frac{1}{2019}\right)\)Mà ta có:
\(\frac{2}{2017}=\frac{1}{2017}+\frac{1}{2017}>\frac{1}{2018}+\frac{1}{2019}\)
\(\Rightarrow\frac{2}{2017}-\frac{1}{2018}-\frac{1}{2019}>0\)
\(\Rightarrow C>3\)