K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:

\(C=\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2017}=1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{2}{2017}=3+\left(\frac{2}{2017}-\frac{1}{2018}-\frac{1}{2019}\right)\)Mà ta có:

\(\frac{2}{2017}=\frac{1}{2017}+\frac{1}{2017}>\frac{1}{2018}+\frac{1}{2019}\)

\(\Rightarrow\frac{2}{2017}-\frac{1}{2018}-\frac{1}{2019}>0\)

\(\Rightarrow C>3\)

5 tháng 4 2018

Ta có : 

\(Q\left(x\right)=\left|x-2017\right|+\left|x-2018\right|+\left|x-2019\right|\)

\(Q\left(x\right)=\left|x-2018\right|+\left(\left|x-2017\right|+\left|x-2019\right|\right)\)

\(Q\left(x\right)=\left|x-2018\right|+\left(\left|x-2017\right|+\left|2019-x\right|\right)\)

Áp dụng bất đẳng thức giá trị tuyệt đối \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) dấu "=" xảy ra khi \(ab\ge0\) ta có : 

\(\left|x-2017\right|+\left|2019-x\right|\ge\left|x-2017+2019-x\right|=\left|2\right|=2\)

Dấu "=" xảy ra khi \(\left(x-2017\right)\left(2019-x\right)\ge0\)

Trường hợp 1 : 

\(\hept{\begin{cases}x-2017\ge0\\2019-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2017\\x\le2019\end{cases}}}\)

\(\Rightarrow\)\(2017\le x\le2019\)

Trường hợp 2 : 

\(\hept{\begin{cases}x-2017\le0\\2019-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2017\\x\ge2019\end{cases}}}\) ( loại ) 

Suy ra : \(Q\left(x\right)=\left|x-2018\right|+2\ge2\)

Dấu "=" xảy ra khi \(\left|x-2018\right|=0\)

\(\Leftrightarrow\)\(x-2018=0\)

\(\Leftrightarrow\)\(x=2018\) ( thoã mãn \(2017\le x\le2019\) ) 

Vậy giá trị nhỏi nhất của \(Q\left(x\right)=2\) khi \(x=2018\)

Chúc bạn học tốt ~ 

5 tháng 4 2018

thanks bn nha

Biểu thức M lớn hơn biểu thức N

6 tháng 9 2018

Ta có : \(\frac{2016}{2017}< \frac{2017}{2017}=1\)

            \(\frac{2017}{2018}< \frac{2018}{2018}=1\)

             \(\frac{2018}{2019}< \frac{2019}{2019}=1\)

Nên : \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}< 1+1+1=3\)

6 tháng 9 2018

\(\frac{2016}{2017}< 1\)

\(\frac{2017}{2018}< 1\)

\(\frac{2018}{2019}< 1\)

=> \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}< 1+1+1=3\)

6 tháng 6 2019

\(A=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{1}{2018}\)

\(A=1+\left(1+\frac{2017}{2}\right)+\left(1+\frac{2016}{3}\right)+...+\left(1+\frac{1}{2018}\right)\)

\(A=\frac{2019}{2019}+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2018}\)

\(A=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)\)

Ta có: \(\frac{A}{B}=\frac{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}=2019\)

20 tháng 10 2018

Để A có giá trị nhỏ nhất thì A = 1 ; 0 

=> x thuộc ( 2018 hoặc 2017)

20 tháng 10 2018

\(A=\left(x-2017\right)^{2018}+2019\)

Ta có: \(\left(x-2017\right)^{2018}\ge0\forall x\)

\(\Rightarrow\left(x-2017\right)^{2018}+2019\ge2019\forall x\)

\(A=2019\Leftrightarrow\left(x-2017\right)^{2018}=0\Leftrightarrow x-2017=0\Leftrightarrow x=2017\)

\(A_{min}=2019\Leftrightarrow x=2017\)

\(\dfrac{x+5}{2017}+\dfrac{x+4}{2018}+\dfrac{x+3}{2019}=-3\\ \dfrac{x+5}{2017}+1+\dfrac{x+4}{2018}+1+\dfrac{x+3}{2019}=-3+3\\ \dfrac{x+5}{2017}+\dfrac{2017}{2017}+\dfrac{x+4}{2018}+\dfrac{2018}{2018}+\dfrac{x+3}{2019}+\dfrac{2019}{2019}=0\\ \dfrac{x+2022}{2017}+\dfrac{x+2022}{2018}+\dfrac{x+2022}{2019}=0\\ x+2022.\left(\dfrac{1}{2017}+\dfrac{1}{2018}+\dfrac{1}{2019}\right)=0\)

⇒x+2022=0 (vì \(\dfrac{1}{2017}+\dfrac{1}{2018}+\dfrac{1}{2019}\)\(\ne0\))

⇒x=0-2022

⇒x=-2022

16 tháng 8 2018

Cảm ơn nka