Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.ĐKXĐ \(x\ne0,x\ne1\),\(x\ne-1\)
B=\(\frac{4}{\left(x-1\right)^2}-\frac{x^2-1}{x^3-x}.\frac{x^3+x}{\left(x-1\right)^2}\)=\(\frac{4}{\left(x-1\right)^2}-\frac{x.\left(x^2+1\right)\left(x^2-1\right)}{x\left(x^2-1\right)\left(x-1\right)^2}\)=\(\frac{4}{\left(x-1\right)^2}-\frac{x^2+1}{\left(x-1\right)^2}\)
=\(\frac{3-x^2}{\left(x-1\right)^2}\)
b.TH1 x=3\(\Rightarrow\)B=\(\frac{3-3^2}{2^2}=\frac{-3}{2}\)
TH2 x=-1\(\Rightarrow\)B=\(\frac{3-\left(-1\right)^2}{4}=\frac{1}{2}\)
c.B=-1\(\Leftrightarrow\frac{3-x^2}{\left(x-1\right)^2}=-1\)\(\Leftrightarrow x^2-3=x^2-2x+1\)\(\Leftrightarrow2x=4\Leftrightarrow x=2\)
d.B+2=\(\frac{3-x^2}{\left(x-1\right)^2}+2=\frac{x^2-4x+5}{\left(x-1\right)^2}=\frac{\left(x-2\right)^2+1}{\left(x-1\right)^2}\ge0\)với mọi x\(\Rightarrow B\)>-2
Bài 2:
a: Ta có: \(x^2+4x+7\)
\(=x^2+4x+4+3\)
\(=\left(x+2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi x=-2
a: \(E=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\)
\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x^2-1+x+2-x^2}\)
\(=\dfrac{x^2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2}{x-1}\)
c: |2x+1|=5
=>2x+1=5 hoặc 2x+1=-5
=>x=-3(nhận) hoặc x=2(nhận)
Khi x=-3 thì \(E=\dfrac{\left(-3\right)^2}{-3-1}=-\dfrac{9}{4}\)
Khi x=2 thì \(E=\dfrac{2^2}{2-1}=4\)
a, \(B=\left(\frac{9-3x}{x^2+4x-5}-\frac{x+5}{1-x}-\frac{x+1}{x+5}\right):\frac{7x-14}{x^2-1}\)
\(=\left(\frac{9-3x}{\left(x-1\right)\left(x+5\right)}+\frac{\left(x+5\right)^2}{\left(x-1\right)\left(x+5\right)}-\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+5\right)}\right):\frac{7\left(x-2\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{9-3x+x^2+10x+25-x^2+1}{\left(x-1\right)\left(x+5\right)}.\frac{\left(x-1\right)\left(x+1\right)}{7\left(x-2\right)}\)
\(=\frac{35+7x}{x+5}\frac{x+1}{7\left(x-2\right)}=\frac{7\left(x+5\right)\left(x+1\right)}{7\left(x+5\right)\left(x-2\right)}=\frac{x+1}{x-2}\)
b, Ta có : \(\left(x+5\right)^2-9x-45=0\)
\(\Leftrightarrow x^2+10x+25-9x-45=0\Leftrightarrow x^2+x-20=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)
TH1 : Thay x = 4 vào biểu thức ta được : \(\frac{4+1}{4-2}=\frac{5}{2}\)
TH2 : THay x = 5 vào biểu thức ta được : \(\frac{5+1}{5-2}=\frac{6}{3}=2\)
c, Để B nhận giá trị nguyên khi \(\frac{x+1}{x-2}\inℤ\Rightarrow x-2+3⋮x-2\)
\(\Leftrightarrow3⋮x-2\Rightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
x - 2 | 1 | -1 | 3 | -3 |
x | 3 | 1 | 5 | -1 |
d, Ta có : \(B=-\frac{3}{4}\Rightarrow\frac{x+1}{x-2}=-\frac{3}{4}\)ĐK : \(x\ne2\)
\(\Rightarrow4x+4=-3x+6\Leftrightarrow7x=2\Leftrightarrow x=\frac{2}{7}\)( tmđk )
e, Ta có B < 0 hay \(\frac{x+1}{x-2}< 0\)
TH1 : \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}}}\)( ktm )
TH2 : \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Rightarrow-1< x< 2}\)
sau khi rút gọn ta được \(P=\frac{x-4}{x-2}\left(x\ne-3;x\ne2;x\ne-2\right)\)
d,ta có \(P=\frac{x-4}{x-2}=\frac{x-2-2}{x-2}=1-\frac{2}{x-2}\left(x\ne-2;x\ne-3;x\ne2\right)\)
để P nguyên mà x nguyên \(\Leftrightarrow x-2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
ta có bảng:
x-2 | 1 | -1 | 2 | -2 |
x | 3(tm) | 1(tm) | 4(tm) | 0(tm) |
vậy \(P\in Z\Leftrightarrow x\in\left\{3;1;4;0\right\}\)
e,x2-9=0
\(\Leftrightarrow x^2=9\Leftrightarrow\orbr{\begin{cases}x=3\left(tm\right)\\x=-3\left(kotm\right)\end{cases}}\)
thay x=3 vào P đã rút gọn ta có \(P=\frac{3-4}{3-2}=-1\)
vậy với x=3 thì p có giá trị bằng -1
a) ĐKXĐ: \(x\ne1\)
b) \(A=\frac{2}{x-1}+\frac{2\left(x+1\right)}{x^2+x+1}+\frac{x^2-10x+3}{x^3-1}\)
\(=\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x^2-10x+3}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{2x^2+2x+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2-2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x^2-10x+3}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{5x^2-8x+3}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{\left(x-1\right)\left(5x-3\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{5x-3}{x^2+x+1}\)
a, gt của B xđ là x\(\ne\)2,x\(\ne\)-2
b, kq \(\frac{-8}{x+2}\)
Để E > 1
Thì \(\frac{x^2}{x-1}\)>1
<==>\(x-1\)>0
<==>x > 1
Vậy x > 1 thì E > 1