Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1,11+0,19-1,3x2^6}{0,296+0,094}-x=\left(\frac{1}{2}+\frac{1}{3}\right):2\)
\(\frac{1,3-1,3x2^6}{0,39}-x=\left(\frac{3}{5}+\frac{2}{5}\right):2\)
\(\frac{0x2^6}{0,39}-x=1:2\)
\(\frac{0}{0,39}-x=0,5\)
\(0-x=0,5\)
\(x=0-0,5\)
\(x=-0,5\)
a) Ta có: \(\left|2x-\dfrac{1}{3}\right|\ge0\forall x\)
\(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|-\dfrac{7}{4}\ge-\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi \(2x=\dfrac{1}{3}\)
hay \(x=\dfrac{1}{6}\)
Vậy: \(A_{min}=-\dfrac{7}{4}\) khi \(x=\dfrac{1}{6}\)
b) Ta có: \(\dfrac{1}{3}\left|x-2\right|\ge0\forall x\)
\(\left|3-\dfrac{1}{2}y\right|\ge0\forall y\)
Do đó: \(\dfrac{1}{3}\left|x-2\right|+\left|3-\dfrac{1}{2}y\right|\ge0\forall x,y\)
\(\Leftrightarrow\dfrac{1}{3}\left|x-2\right|+\left|3-\dfrac{1}{2}y\right|+4\ge4\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\3-\dfrac{1}{2}y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\)
Vậy: \(B_{min}=4\) khi x=2 và y=6
Bài này dễ nên nãy không có định làm, nhưng mà nghĩ lại thôi làm vậy:Đ
a/ \(\dfrac{x}{-2}=\dfrac{-4}{y}=\dfrac{2}{4}\)
Ta có: \(\dfrac{-4}{y}=\dfrac{2}{4}\Rightarrow y=\dfrac{-4.4}{2}=-8\)
\(\dfrac{x}{-2}=\dfrac{-4}{y}=\dfrac{-4}{-8}=\dfrac{1}{2}\Rightarrow x=\dfrac{-2.1}{2}=-1\)
b/\(\dfrac{2}{x}=\dfrac{y}{-3}\Rightarrow xy=-3.2=-6\)
\(\Rightarrow x;y\inƯ\left(-6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Ta có bảng giá trị của x, y như sau:
x | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
y | -6 | 6 | -3 | 3 | -2 | 2 | -1 | 1 |
c/ \(\dfrac{x+1}{2}=\dfrac{8}{x+1}\Rightarrow\left(x+1\right)^2=2.8=16\)
\(\Rightarrow\left[{}\begin{matrix}\left(x+1\right)^2=4^2\\\left(x+1\right)^2=\left(-4\right)^2\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
\(a,\dfrac{x}{7}=\dfrac{6}{12}\\ x\cdot12=7\cdot6=42\\ x=42:12\\ x=\dfrac{7}{2}\\ b,\dfrac{-5}{x}=\dfrac{20}{28}\\ x\cdot20=\left(-5\right)\cdot28=-140\\ x=\left(-140\right):20\\ x=-7\\ c,\dfrac{x-2}{8}=\dfrac{3}{4}\\ \left(x-2\right)4=8\cdot3=24\\ x-2=24:4\\ x-2=6\\ x=6+2\\ x=8\\ d,\dfrac{x}{-5}=\dfrac{-5}{x}\\ x^2=\left(-5\right)\cdot\left(-5\right)=25\\ x=5\)
\(\Leftrightarrow\left|2x-1\right|=\dfrac{7}{2}:\dfrac{21}{22}=\dfrac{7}{2}\cdot\dfrac{22}{21}=\dfrac{11}{3}\)
=>2x-1=11/3 hoặc 2x-1=-11/3
=>2x=14/3 hoặc 2x=-8/3
=>x=7/3 hoặc x=-4/3
Nếu \(x>\dfrac{1}{2}\) , ta có:
\(3\dfrac{1}{2}:|2x-1|=\dfrac{21}{22}\Rightarrow\dfrac{7}{2}:\left(2x-1\right)=\dfrac{21}{22}\Rightarrow x=\dfrac{7}{3}\left(tm\right)\)
Nếu \(x< \dfrac{1}{2}\), ta có:
\(3\dfrac{1}{2}:|2x-1|=\dfrac{21}{22}\Rightarrow\dfrac{7}{2}:\left(1-2x\right)=\dfrac{21}{22}\Rightarrow-2x=\dfrac{8}{3}\Rightarrow x=-\dfrac{4}{3}\left(tm\right)\)
Vậy \(x=\dfrac{7}{3};x=\dfrac{4}{3}\)
Ta có : \(\left(x-1\right)^2+\dfrac{1}{5.9}+\dfrac{1}{9.13}+...+\dfrac{1}{41.45}=\dfrac{49}{900}\)
\(\Leftrightarrow\left(x-1\right)^2+\dfrac{1}{4}.\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{41}-\dfrac{1}{45}\right)=\dfrac{49}{900}\)
\(\Leftrightarrow\left(x-1\right)^2+\dfrac{1}{4}\left(\dfrac{1}{5}-\dfrac{1}{45}\right)=\dfrac{49}{900}\)
\(\Leftrightarrow\left(x-1\right)^2=\dfrac{1}{100}\) \(\Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{10}\\x-1=-\dfrac{1}{10}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11}{10}\\x=\dfrac{9}{10}\end{matrix}\right.\)
Vậy ...
\(\dfrac{1,11+0,19-1,3.2}{0,269+0,094}-x=\left(\dfrac{1}{2}+\dfrac{1}{3}\right):2\)
\(\dfrac{1,11+0,19-1,3.2}{0,269+0,094}-x=\dfrac{5}{6}:2\)
\(\dfrac{1,11+0,19-1,3.2}{0,269+0,094}-x=\dfrac{5}{12}\)
\(\dfrac{1,3-2,6}{0,363}-x=\dfrac{5}{12}\)
\(\dfrac{-1,3}{0,363}-x=\dfrac{5}{12}\)
\(\dfrac{-1300}{363}-x=\dfrac{5}{12}\)
\(x=\dfrac{-1300}{363}-\dfrac{5}{12}\)
\(x=\dfrac{-1935}{484}\)
kết quả này sai rùi