Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔEAD và ΔECG có
góc EAD=góc ECG
góc AED=góc CEG
=>ΔEAD đồng dạng với ΔECG
=>AD/CG=ED/EG
=>AD*EG=ED*CG
b: Xét ΔHEG và ΔHCB có
góc HEG=góc HCB
góc EHG=góc CHB
=>ΔHEG đồng dạng với ΔHCB
=>HE/HC=HG/HB
Xét ΔHAB và ΔHCG có
góc HAB=góc HCG
góc AHB=góc CHG
=>ΔHAB đồng dạng với ΔHCG
=>HA/HC=HB/HG
=>HC/HA=HG/HB
=>HC/HA=HE/HC
=>HC^2=HA*HE
c: HI//BA
=>HI/BA=CH/CA=CI/CB
HI//EG
=>HI/EG=BI/BC
HI/BA=CI/CB
HI/BA+HI/EG=BI/BC+CI/BC=1
=>HI(1/BA+1/EG)=1
=>1/BA+1/EG=1/HI
Bài 6:
a: Ta có: \(E=1:\left(\dfrac{x^2+2}{x^3-1}-\dfrac{x+1}{x^2+x+1}-\dfrac{x+1}{x^2-1}\right)\)
\(=1:\left(\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x+1}{x^2+x+1}-\dfrac{1}{x-1}\right)\)
\(=1:\dfrac{x^2+2-x^2+1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{-x^2-x+2}\)
\(=\dfrac{-\left(x-1\right)\left(x^2+x+1\right)}{\left(x+2\right)\left(x-1\right)}\)
\(=\dfrac{-x^2-x-1}{x+2}\)
Bài 5:
b) Xét tứ giác AHCK có
\(\widehat{AHC}\) và \(\widehat{AKC}\) là hai góc đối
\(\widehat{AHC}+\widehat{AKC}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: AHCK là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
hay \(\widehat{AKH}=\widehat{ACH}\)(Cùng nhìn cạnh AH)
Bài 4:
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{ACB}\) chung
Do đó:ΔABC\(\sim\)ΔHAC
b: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)
c: Xét ΔAHC vuông tại H có HE là đường cao
nên \(HE^2=EA\cdot EC\)
Rút gọn B ta được \(B=\dfrac{x+1}{x^2}\)
Để \(\left|B\right|=B\Leftrightarrow B\ge0\)
\(\Leftrightarrow\dfrac{x+1}{x^2}\ge0\)
\(\Leftrightarrow x\ge-1\)
Kết hợp ĐKXĐ ta được: \(\left\{{}\begin{matrix}x\ge-1\\x\ne0\\x\ne1\end{matrix}\right.\)