Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: x(x-1)=0
=>x=0 hoặc x-1=0
=>x=0 hoặc x=1
b: (x-3)(x+4)=0
=>x-3=0 hoặc x+4=0
=>x=3 hoặc x=-4
c: (2x-4)(x+2)=0
=>2x-4=0 hoặc x+2=0
=>x=2 hoặc x=-2
d: (x+1)2(x-2)2=0
=>x+1=0 hoặc x-2=0
=>x=-1 hoặc x=2
Bài 1:tìm x thuộc Z
a)x.(x-1)=0
\(\Leftrightarrow\left[\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy: \(x=0;1\)
b)(x-3).(x+4)=0
\(\Leftrightarrow\left[\begin{matrix}x-3=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=3\\x=-4\end{matrix}\right.\)
Vậy: \(x=3;-4\)
c)(2x-4).(x+2)=0
\(\Leftrightarrow2\left(x-2\right).\left(x+2\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy: \(x=2;-2\)
d)(x+1)^2.(x-2)^2=0
\(\Leftrightarrow\left[\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
Vậy: \(x=-1;2\)
e) x(x+1).(x+2)^2.(x+3)^3=0
\(\Leftrightarrow\left[\begin{matrix}x=0\\x+1=0\\x+2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=0\\x=-1\\x=-2\\x=-3\end{matrix}\right.\)
Vậy: \(x=0;-1;-2;-3\)
f)(x-9)^5.(x-5)^8=0
\(\Leftrightarrow\left[\begin{matrix}x-9=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=9\\x=5\end{matrix}\right.\)
Vậy: \(x=9;5\)
g)x(x+100)^10.(x+2000)^20.(x+300)^300=0
\(\Leftrightarrow\left[\begin{matrix}x=0\\x+100=0\\x+200=0\\x+300=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=0\\x=-100\\x=-200\\x=-300\end{matrix}\right.\)
Vậy: \(x=0;-100;-200;-300\)
h)(x-2)^2=0
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy: \(x=2\)
1) Do x ∈ Z và 0 < x < 3
⇒ x ∈ {1; 2}
2) Do x ∈ Z và 0 < x ≤ 3
⇒ x ∈ {1; 2; 3}
3) Do x ∈ Z và -1 < x ≤ 4
⇒ x ∈ {0; 1; 2; 3; 4}
Bài 1:
a, \(x^2\) +2\(x\) = 0
\(x.\left(x+2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(x\) \(\in\) {-2; 0}
b, (-2.\(x\)).(-4\(x\)) + 28 = 100
8\(x^2\) + 28 = 100
8\(x^2\) = 100 - 28
8\(x^2\) = 72
\(x^2\) = 72 : 8
\(x^2\) = 9
\(x^2\) = 32
|\(x\)| = 3
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(\in\) {-3; 3}
c, 5.\(x\) (-\(x^2\)) + 1 = 6
- 5.\(x^3\) + 1 = 6
5\(x^3\) = 1 - 6
5\(x^3\) = - 5
\(x^3\) = -1
\(x\) = - 1
1 a= 300.3=900
b= 204.(-8).5
= (-1632).5=(-8160)
2
A= 365.72.(-11).(-10)
B= (-714).(-232).(-72)
A= 26280.110
B= 165648.(-72)
A= 2890800
B= (-11926656) A lớn hơn B
3 a 2x-5=15
2x= 15+5
2x= 20
x = 20:2
x=10
\(a,-12\left(x-5\right)+7\left(3-x\right)=5\)
\(-12x+60+21-7x=5\)
\(-12x-7x=5-60-21\)
\(-19x=-76\Leftrightarrow x=4\)
\(b,30\left(x+2\right)-6\left(x-5\right)-24x=100\)
\(30x+60-6x+30-24x=100\)
\(30x-6x-24x=100-60-30\)
\(0x=10\left(vl\right)\)
Vậy pt vô nghiệm
Bài 2: - Xét dấu :
P1 : (-).(+).(-).(-) -> Kết quả cuối cùng là số âm.
P2 : (-).(-).(-).(-).(+) -> Kết quả cuối cùng là số dương.
===> P1 < P2.
Bài 3 :
a) \(x\cdot\left(x-1\right)=0\)
\(\Rightarrow\left[\begin{matrix}x=0\\x-1=0\end{matrix}\right.\rightarrow\left[\begin{matrix}x=0\\x=1\end{matrix}\right.\)
b) \(\left(x-3\right)\cdot\left(x+4\right)=0\)
\(\left[\begin{matrix}x-3=0\\x+4=0\end{matrix}\right.\rightarrow\left[\begin{matrix}x=3\\x=-4\end{matrix}\right.\)
c) \(\left(2x-4\right)\cdot\left(x+2\right)=0\rightarrow\left[\begin{matrix}2x-4=0\\x+2=0\end{matrix}\right.\rightarrow\left[\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
d) \(\left(x+1\right)^2\cdot\left(x-2\right)^2=0\rightarrow\left[\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\rightarrow\left[\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
e) \(x\cdot\left(x+1\right)\cdot\left(x+2\right)^2\cdot\left(x+3\right)^3=0\)
\(\Rightarrow\left[\begin{matrix}x=0\\x+1=0\\x+2=0\\x+3=0\end{matrix}\right.\rightarrow\left[\begin{matrix}x=0\\x=-1\\x=-2\\x=-3\end{matrix}\right.\)
f) \(\left(x-9^5\right)\cdot\left(x-5\right)^8=0\)
\(\Rightarrow\left[\begin{matrix}x-9=0\\x-5=0\end{matrix}\right.\rightarrow\left[\begin{matrix}x=9\\x=5\end{matrix}\right.\)
g) \(x\cdot\left(x+100\right)^{10}\cdot\left(x+2000\right)^{20}\cdot\left(x+300\right)^{3000}=0\)
\(\Rightarrow\left[\begin{matrix}x=0\\x+100=0\\x+2000=0\\x+300=0\end{matrix}\right.\rightarrow\left[\begin{matrix}x=0\\x=-100\\x=-2000\\x=-300\end{matrix}\right.\)
h) \(\left(x-2\right)^2=0\rightarrow x=2\)